AFRL-RI-RS-TR-2011-220

PHOENIX: SERVICE ORIENTED ARCHITECTURE FOR
INFORMATION MANAGEMENT - ABSTRACT ARCHITECTURE
DOCUMENT

SEPTEMBER 2011
INTERIM TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

B AIR FORCE MATERIEL COMMAND BMUNITED STATES AIR FORCE B ROME, NY 13441

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88" ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2011-220 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

/sl /sl
STEVEN D. FARR JULIE BRICHACEK, Chief
Branch Chief Information Systems Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
SEP 2011

2. REPORT TYPE
Interim Technical Report

3. DATES COVERED (From - To)
JAN 2009 — NOV 2010

4. TITLE AND SUBTITLE

PHOENIX: SERVICE ORIENTED ARCHITECTURE FOR

INFORMATION MANAGEMENT - ABSTRACT

ARCHITECTURE DOCUMENT

5a. CONTRACT NUMBER
In House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

J. Bryant (ITT), V. Combs (AFRL), J. Hanna (AFRL), G. Hasseler (ATC-NY),

R. Hillman (AFRL), B. Lipa (ITT), J. Reilly (RRC), C. Vincelette (ITT)

5d. PROJECT NUMBER
S2TS

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/RISE, 525 Brooks Road, Rome, NY 13441-4505

ITT, 775 Daedalian Drive, Rome NY 13440
RRC, Ridge Street, Rome NY 13440
ATC-NY, Thornwood Drive, Ithaca NY

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/Information Directorate

Rome Research Site
26 Electronic Parkway
Rome NY 13441

AFRL/RI

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-RI-RS-TR-2011-220

12. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2011-0022

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This document specifies the architectural design of Phoenix Information Management (IM) Services, also referred to as the IM

Services. The Phoenix IM Services project is not a development effort in the traditional sense. The goal is to define an abstract

concept for an information infrastructure, from which one or more implementations may be developed. The architecture
specifications in this document provide an approach to meeting to needs of information management in future net-centric

environments.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT [c. THIS PAGE
U U U

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF PAGES

186

19a. NAME OF RESPONSIBLE PERSON

VAUGHN COMBS

19b. TELEPHONE NUMBER (Include area code)

N/A

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

Table of Contents

T agoTe [T o1 o] o PSPPSR
INfOrmMation MaNAgEMENToiiiiiie e e e e e e et re e e e et e e e e e ate e e e e abteeeennbaeeeans s eenbeeeesnsens
2 ol 4= 01U o T PRSP
YU T 1T o ol PSPPSR
107010 1Y7=1 0 o] o LRSS PUPRPPRP
DIagram CONVENTIONSciiiiiiiiiiieieieieeeeeeeee ettt e e e e e e e et e et e e e e e e e eeeeeeeeeeesesesasasasasasesnssurasseseeenenen
{60 g Tol=Y o) 3PN
L0 = PP PO OPPPTPPTN
INFOIMATION L.ttt ettt a e st at et e e b e e bt e bt e sbeesbeesbeeebeees sbeenbeesaeeeaaeeaneeareeas
INFOIMATION TYPES ...ttt ettt b e b e be e s bt e eat e et e st e et e e bt e b e e been ebeesneesneeeaneeareens
EVENES e e
AcCtor & Service INTEraCtioNsciiviiiiiiiiiiii it
(01 T T =] TP TOVSRPPTOPIIOt
CONEIOL CRANNEIS ... ittt ettt ettt e bt e e st e s bt e e be e e sabeesabeeebeeebee e eesmseesareeennseanns
SESSIONS AN SESSION TIACKS...cuutieitiieiiieeiie ettt ettt et e st e s be e s bee e sabe e sabeesbeeesateesabee eesabeesnneens
B OIS ettt et h bt b e e bt sh et s Rt s ae e eae e e a bt et £esaee st e sabe e bt e teereereen 10
T I =Y oY o PSSR 10
LY Ol =11 a1 V= U PUUPPRRURRIOt 11
Tl oY a = TuToT o = o1 =T o T o =R UPUSPRE 11
SEIVICE OFCRESIAtION. .. .ei ittt ettt sttt et ettt et e e s bt e sbeesbe resabesbeebeennees 12
Use Case : INnformation SUDMISSIONc.uiiiiieiiii it e 12
ArChiteCtUre SPECIH ICAtION ... i e e e et e e e e e e e s btbre e e e e eeesnntes sennrsaaseeasesnnnnnns 12
(@oT 0] oo o =T 0 Al [0l =T = ol T3PPSR 12
Lo = PPN 13
([0 o] 0 =1 o o 1RSSR 25
SESSION 1ieiiiii ittt e e e e e e e e b e e s sba s e e s sbaeeeseaes 33
(61 =T 0T =1 ISP P PP PRSPPI 35
L T (=53] (o PP 50
L 0 =P PPPUTO 53
EVENT e e e e e e e s snaaee 55
SEIVICE INTEITACES ... eei ettt ettt ettt e sa b e e s b et e sab e e sabeesabeesbteesabeesabee beeenbteennteesaseesnnseenns 59

INTOrMAtiON SEIVICE INTEITACES. . uuiiiiiiieiiiiieeeeeeeeeeeeeee ettt ettt ettt e et e et e et et e et et e e e et e e et et e et e e e e e e e essateraeaaaeeees 59

DiISSEMINATION e e e b e ereaeaaaan 59

Tl oY an - LuToT ol = T4 o1 = o T o = SR 62
T} oY aaa T I A TeTa TN R/ o 1S 67

L LT = PSS PUPPPPU 72
0= oo 1Y 1 o] Y20 78
SUDIMISSION .ttt ettt ettt ettt et e st e e s bt e s bt e e sabeesabeesabaeesabeesabeesabeeaas senbeesaseeesabeesanes 83

O L] LA YT oY (ol I N =T o - o] Y-S UPSPE 84
L6111 o | PP PS PP 85
EVENT NOTIICATION wetinitiiiiie ettt ettt bt e e st esabe e s bee e sat sabeesaneeesareeas 90
1= TP P PP PRV 96

T} oY aaF=1uToT o BTy ole 17T o SR 102

R LT oL U1 1 4V PSSP PPPPPPPPPPPPP 104
Y= VA Tolc = o] =T o T =S 109
SESSION IMANAEZEMENT ...eiiiiiiiiiitttee ettt ettt e e e e e st re e e e e e sesaabbtteeeesesabnbeeeeeesssannseeee sannnrneeens 113
Y] o XY ol T 4 e o SRR 118
SErEeamMS SEIVICE INTEITACES ... eiiiieieeteet ettt sttt ettt et et et b e saeesane e 122
(60191 1= u o] o B PP P O PUPP PRIt 123
SEFEAIM BIrOKEIINE c.neviiviieee e ettt e ettt e e e ee et e e e e e e e e sabbaeeeeeeeeetabbaaeeeeeesasatsraseeeeenansss seeessnnsrseeees 135
SErEAM DISCOVEIY ..iiiiiiiieieeeeeeee ettt bttt et st s babaee saaeeeaaaaaaaeas 148
SErEAM REPOSITONY ittt bttt bbbttt ban s eeeeaeeeaeeeas 152
RETEIEINCE ...ttt h e a e et sttt ettt ettt e e bt e nbe e s sabeebe e beenbeesaeesaeeeaee 163
L= 2 1P PPPPPPPPPOR 163
ACTONYIMS ittt e et et et et e e e e e e e e e e e eeeeeaeeeaeeeeaaaaeaeaaaaaasasasasasasasasasasasasasasaasansenenenenenenenenenenens 164
INTEIfACE HIBrarChIES ..ottt ettt e b e bt b e be e e saee st e ereeeeens 165
Yol & T= I A N Lot (U TSR 168
HOW 0. ittt e e s e et e e e s b b et e e e s sabea e e e e e s s s are et e e e e e e 169
How To...SUbMIt INFOrMAationcocuiiiiiiee et e 169
How To...Subscribe to INfOrmation ..ot e 172
HOW T0...5t0re INfOrmMationc.c.uiiiiiiiee ettt sttt e b e e sae e e st sbeeesareeas 176
How To...QuEery for INfOrmationooe i e e e e e et e e e e e s e e e e e e eannes 177

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
ii

Introduction

This document specifies the architectural design of Phoenix Information Management (IM)
Services, also referred to as the IM Services. The Phoenix IM Services project is not a
development effort in the traditional sense. The goal is to define an abstract concept for an
information infrastructure, from which one or more implementations may be developed. The
architecture specifications in this document provide an approach to meeting the needs of
information management in future net-centric environments.

This document is one of the deliverables for the Phoenix project. The purpose of this document is
to present the results of the requirements analysis and design work that has been completed. An
iterative, object oriented approach has been used to develop the design. The results are
presented here in the form of textual descriptions of the components along with Unified Markup
Language (UML) diagrams. UML diagrams describe in detail the actors, actions, interactions, and
overall services architecture. The following types of UML diagrams are used to depict the
architectural entities: Use Case, Activity, Sequence, and Class.

Information Management

The definition of information management is “a set of intentional activities to maximize the value
of information for achieving the objectives of the enterprise.” The primary purpose of information
management is to achieve effective information sharing among the many applications and users
within an enterprise. In the case of net-centric Command and Control (C2) systems, mission
success is tied to application interoperability, i.e., information sharing among edge-user producer
applications and edge-user consumer applications.

Three best practices have been identified as crucial to future net-centric C2 systems. These best
practices are:

1. Reduce complexity in the edge-user applications by moving it to a shared and supported
infrastructure. The infrastructure will provide common necessary functions, such as
authentication, authorization, access control, prioritization, and demand-driven
information flow. This will free the information provider and consumer applications from
having to manage these functions. The infrastructure will provide universal services, such
as publish, subscribe and query, that are information-neutral.

2. Increase the ability to control the system by decreasing the number of places that must
be modified to implement a change. By moving policy enforcement to the shared
infrastructure, changes in policy can be accomplished without changing any of the edge-
user applications. Similarly, when the operational environment changes, the
infrastructure will be changed to compensate, and the edge-user applications will still
function properly.

3. Package information appropriately for dissemination and management. Effective
management of information requires that it be characterized sufficiently so that it can be
interpreted unambiguously. The characterization is called metadata, while the information
itself is called the payload. The information infrastructure uses the metadata to know how
and where to acquire, store and deliver the payloads.

The goal of the Phoenix project is to define such a shared infrastructure that incorporates these
best practices and thus allows for both rapid application development and independent evolution
of disparate C2 systems.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
1

Background

The Air Force and the Department of Defense (DoD) have been moving towards a network-
centric concept of operations. Interest in Service Oriented Architecture (SOA) based systems will
help move the concept of the Global Information Grid (GIG) closer to realization. SOA based
systems group functionalities around business processes and expose them as packaged,
interoperable services. These services allow applications to exchange data while performing
individual or collaborative business processing. These characteristics make SOA a perfect blend
of rigidness and flexibility for Information Management (IM) operations.

The Air Force Research Laboratory (AFRL) Systems & Information Interoperability Branch (RISE)
main research focus has been Information Management. The branch grew out of the pioneering
work done in this field by the members of the Joint Battlespace Infosphere (JBI) project. In turn,
this project was kicked off by a review and subsequent publication from the Scientific Advisory
Board (SAB) in 1999 stating that the Air Force was weak in the areas of systems integration and
information management. The current effort, called Project Phoenix, will leverage all of the
existing in-house knowledge of IM, along with the expertise of its external research efforts as
well as requirements gathered from customers, to produce a SOA-based IM solution. This
solution will be aligned with the Air Force and DoD’s vision of current and future network-centric
operations.

Audience

This document is intended for two types of readers: those who are implementing the architecture
as specified and those who are looking for an overview of the key architectural concepts.

Implementers will need to be familiar with Unified Markup Language (UML), have installed the
Visual Paradigm for UML Viewer Edition, and have a copy of the Phoenix.vpp Visual Paradigm
project file. Visual Paradigm for UML can be downloaded from http://www.visual-paradigm.com.

For those who are interested in an overview of the key architectural concepts, this document is
all that is required.

Conventions

This document provides both a literal and conceptual design of the Phoenix architecture. The
literal architecture is a technical specification defined using UML. The conceptual architecture is
a less formal description using plain language and diagrams to provide design concepts and
objectives.

Diagram Conventions

Throughout this document there are a number of non-UML diagrams that are used to illustrate
high-level concepts. Samples of these diagrams are shown below along with usage information.

The figure below shows a sample communication between Phoenix entities via channels.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
2

Entity

Producer

Service

Consumer

Actor

Inquisitor

Meaning Color

Produces information.

Manipulates information.

Consumes information.

A generic term that can mean producer, consumer, or service.

A type of consumer that queries a service to get information.

The figure below is a sample diagram showing labeled information flow.

Concepts

This section specifies the key concepts in the Phoenix architecture:

e Contexts

e |nformation

e Information Types

e Events

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
3

e Actor & Service Interactions
e Channels

e Control Channels

e Sessions and Session Tracks
e Filters

e Information Brokering

e Service Orchestration

Contexts

The context is one of the basic constructs within the Phoenix architecture. Contexts are used by
Phoenix services and components for storing state and configuration settings. Each context
contains a set of key-value pairs. Helper methods are defined within many contexts that require
specific keys with specific types of values. For example the Service Context interface defines the
set and retrieval methods for a key whose value represents the current service status. This key
requires values to be members of the Service Status enumeration. Contexts are not limited to
storing predefined keys and values however. The Base Context interface, which is the parent
interface for all contexts, was designed with idea that it could support setting and retrieving
values of any type for any specific key defined by any implementation of the architecture.
Contexts are meant to be easily extensible to accommodate additional attributes based on
operational requirements within any implementation-level design.

Since contexts are used to store configuration settings for Phoenix entities, they need to support
a mechanism for notifying their parent entities, or any other system construct, when a value is
changed at runtime. This concept is realized by the definition and application of the Base
Attribute Update Callback. When one of these callbacks is applied to a specific key-value pair
within a context, any entity that has expressed an interest in being notified when that value
changes is notified whenever a change occurs. The most obvious use case for this capability is
controlling the configuration setting updates for Quality of Service (QoS) managed information
channels. In this case the callback would be the mechanism that alerts the channel that one of
its settings has been modified, thus kicking off some processing that effects a change in the way
the channel is performing its job.

Contexts are conceptualized to be unique to their context container. This means that any entity
in an implementation of the Phoenix Architecture that implements the Context Container
interface or one of its sub-interfaces is expected to contain one and only one context instance
that is unique to the container. This is done to ensure that different instances of the same
implementation classes end up with unique contexts that describe them and their respective
state.

Information

Information, the central concept behind IM, is the currency that flows between and among
actors. A complete unit of information consists of:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
4

e An information type identifier
0 Tags the payload with a known and defined information structure.
0 May or may not be optional depending on how designers wish to implement the
ability to support untyped information.
e Metadata (the description of the payload)
0 May or may not be a subset of the payload.
0 May duplicate some or the entire payload.
0 Is used for Brokering.
0 Is used for Storage and Retrieval.
0 May be used by filters.
e A payload (the actual data being managed)
0 May consist of known or unknown content.
0 May or may not be used by an actor.
¢ An InformationContext
0 Contains attributes that provide additional insights that further describe the
information, including any implementation specific attributes.

Two simple examples offer different, yet consistent views of information. The first example
consists of an information type that contains XML as the payload with certain fields promoted to
metadata. The second consists of an information type that contains a binary (image file) payload
and XML metadata that describes that image.

Example 1:

An Air Tasking Order (ATO) fragment for a specific reconnaissance mission may be the data of
interest. The payload may contain the ATO fragment in XML format, the metadata may contain
the mission number and the information type identifier may be mil.af.ato.

Example 2:

A sensor may have captured an image of interest. The information type identifier may be
sensor.mil, the payload would be the image itself, and the metadata would describe the image,
and possibly, its contents.

Information may be represented in such a way that it contains only pointers to one or both the
payload or metadata. Information within the Phoenix architecture is defined by the Information
interface.

The Phoenix architecture does not define whether or not instances of information are immutable.
This decision is left up to the implementation designers and developers to insure that the
implementations of the IM Services are optimally tailored to meet the operational requirements
of the stakeholders and their individual Communities of Interest (COIls).

Information Types

Information types are used to uniquely identify classes of information. An information type
consists of:

e A unique identifier.
e A payload schema.

e A metadata schema.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
5

e Other implementation specific attributes.

The unique identifier for an information type is used by the IM Services to identify what type of
information a particular instance represents. This is useful for operations such as metadata or
payload validation. Information type identifiers may be implemented such that they represent
some kind of implementation specific information type hierarchy. For example, information type
identifiers could be implemented to follow Java package standards where underlying packages
are extensions of parent packages.

The payload schema for an information type describes the structure of the information being
managed. Each individual payload instance should conform to its corresponding information
type’s payload schema. For example, an XML payload for type ATO should conform to the
payload XML Schema Document (XSD) defined by the ATO information type.

Metadata schemas are similar to the payload schemas. They define the structure of the metadata
for the information being managed, i.e. the structure for the metadata describing the payload.
Each individual metadata instance should conform to its corresponding information type’s
metadata schema. For example an XML metadata instance for type ATO should conform to the
metadata XSD defined by the ATO information type.

It is important to note that structure of the payload and metadata need not be expressed by XML
schema documents (XSD). XML and XSD were chosen as examples in an attempt to explain an
abstract idea using a common, well-known, and understood representation.

Additional attributes for information types may be defined by implementations of the
architecture. This allows implementation developers to associate data or constructs of any kind
with information types. For example an implementation of the architecture may define unique
metadata generation routines for each information type.

Information types are managed by the Information Type Management Service.

Events

The Phoenix architecture defines events as non-managed data items that facilitate interactions
between actors. The key difference between events and information is that the event hierarchy
and structures must be defined by the implementation at design time while information types
can be defined by any actor with sufficient privileges at runtime.

Some simple examples of events are messages used for confirmation of information submission
and delivery, notification of which actors are interested in certain types of information, control
messages used to facilitate the creation and destruction of channels, and just about any other
interaction or status message you can think of. Events may be managed in some capacity, but
they are not managed in the same ways that information instances are. Events are meant to
facilitate the transportation of service level data items that are not supposed to be visible to
actors. To facilitate event communications the Phoenix architecture defines specific channel
interfaces for events.

Actor & Service Interactions

Actors communicate with services via channels. Data to be moved through and processed by the
services is transported from the actor to the service by byte, event, frame, and information

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
6

channels. Service methods are invoked through control channels. Invocations of service methods
are monitored at the service level by the use of actor sessions and session tracks.

Channels

Channels are the central construct for the Phoenix architecture because they facilitate all
interactions between all Phoenix actors.

Channel implementations are organized by application and transport protocols. The specific
protocols are defined by the Phoenix implementations: for example application protocols may be
defined as information, byte, event, and frame while the transport protocols may be Transport
Control Protocol (TCP) and Universal Data Protocol (UDP). A specific channel used by a Phoenix
actor is a combination of an application protocol and a transport protocol. For example, based on
the aforementioned protocols, a channel for an actor may be information:tcp which translates to
an information channel that uses TCP as its transport.

Channels are defined within the Phoenix architecture by the BaseChannel interface. The control
mechanisms for creating and maintaining channel instances are defined by the
BaseChannelService interface. The architecture also defines several standard flavors of channels
including byte, event, frame, and information. More varieties of channels are allowed due to the
extensibility of the architecture, these were defined due to the associated objects being central
components of the architecture (events are tied to the Event Notification Service, information is
tied to several services, etc.).

Channel Lifecycle

Channels are created by the service or actor that will utilize them. There is a service level
method for configuring an actor output channel. This method exists to allow an actor the ability
to ask a service to configure a channel for the actor to use to communicate with that service. For
example, if an actor calls this method with a channel context the service may set the host
address, host port, and/or the application and transport protocols for the actor's channel to use.

The lifecycle of a channel is similar to that of a Java socket: create, open, utilize, close. The main
difference between a Java socket and a Phoenix channel is that a channel may be suspended and
resumed without being physically closed. The creating actor is responsible for maintaining the
lifecycle of the channel.

Control Channels

Control channels are abstract notions that are manifested implicitly by each call upon a service
interface. As such, control channels are not physical constructs within the IMS but instead they
are embodied by the architecture’s use of the connector-stub model for service interface
invocations. These connector and stub constructs supply adequate physical components for
possible application of security or Quality of Service (QoS) policies.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
7

Figure 1 - Connectors and Stubs

The stub represents the actor side of a connection between the service and an actor. Any service
method exposed by the connector must also be specified by the stub to allow a connection
between the actor and the service. The connector represents the service side of a connection
between the service and an actor. The service methods that an implementer wishes to expose to
an actor are specified within the connector.

Control stubs for services may be obtained either through static configuration or some runtime
mechanism specific to the connector-stub implementation (for example RMI would require the
use of an RMI registry and lookups).

Sessions and Session Tracks

A session is a sustained interaction between an actor and a set of other actors. A session may
represent a one-to-one or a one-to-many relationship. Sessions are used to store configuration
data about an actor and what actions they are undertaking within the Phoenix information space.
Such configuration data can include, but is not limited to:

e The set of information channels (input and output) associated with this actor,
e The set of filters this actor is allowed to utilize,
e Any specific security policy restrictions or rights that apply to this actor only,

e Any other configuration data deemed to be of some use or value that should be
associated with a session and stored for later retrieval.

A session track is an ordered collection of session identifiers showing the sequence of actors
involved in a transaction. Session tracks can be used to:

e Show service usage.
e Support security and QoS policy decisions.

e Determine the originator of a session.

It is important to understand the difference between a session and a session track. A session is
used to monitor actors' interactions with other actors by maintaining state that describes what
operations an actor is performing. A session track is a construct that holds only session
identifiers and is used by all actors to enable policy decisions during control method invocations.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
8

Figure 2 shows an actor (A) as the originator of two session tracks (ST, ST™II), both using the
same session identifier (ANSID). Each Phoenix information service (SS, IBS) that has one of its
methods invoked via a control channel receives one of these session tracks and annotates it with
its own session identifier (IBS”"SID, SS™SID). These services also invoke methods on the
Session Management Service (SMS) to update the associated session context as applicable,
perhaps with descriptions of information being submitted or subscriptions registered. These
services also communicate with the Authorization Service (AS) as required in order to authorize
the method invocations made by the actor.

Figure 2 - Sessions & Session Tracks

Diagram Key

A The Actor who creates a session and begins invocation chains using session track instances.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
9

AS The Authorization Service.

IBS The Information Brokering Service.
SID A Session ldentifier.

SMS The Session Management Service.
SS The Submission Service.

ST A Session Track.

Sessions and session tracks are defined in the architecture by the SessionContext and
SessionTrack interfaces, respectively.

Filters

The Phoenix architecture defines an adaptable data filtering capability that may be applied to any
component within the architecture. The most obvious use for filters is any interaction between a
pair of actors but filters may also be applied to inter-service operations and components such as
subscriptions. For example a subscription may have multiple consumers and security may dictate
a key-word filter be applied to all outgoing information. In this case it may be optimal for the
information filtering to be done within the Information Brokering Service instead of within the
Dissemination Service.

The architecture provides an interface for a filtration chain mechanism dubbed Filter Chain. This
entity, whose instances are constructed by the factory method available as part of the Filter
Management Service, embodies a chain of filters that are be invoked in the order they are linked
and the operations that each filter will be performing including each filter’s required input and
expected output. The Filter interface provides a generic filtration method that takes an Object as
its parameter and returns the same. This allows the Phoenix filters their aforementioned
flexibility. This transparency comes with a drawback however; each specific filter implementation
must know a priori exactly what type of Object it is receiving to perform filtering operations over.
This transparency also means that the Filter Chain entities must know exactly what is being
returned by each specific filter in order to ensure that the inputs and outputs of chained filters
match up exactly.

Filters are defined in the architecture by the Filter interface.

Filter Lifecycle

It is envisioned by the Phoenix Design Team that all filters are to be registered with at least one
Filter Management Service (FMS) shortly after creation and before they can be utilized. This is
enforced by the definition of methods within both the Filter and Filter Chain interfaces that are
only visible at the package level, thereby guaranteeing that any code external to the Phoenix
filter package cannot invoke them. Filters are able to be created by any actor within the Phoenix
environment, but only those actors who can communicate with the FMS may actually utilize them
for filtration operations. Any single filter’s lifecycle can be summed up by the following steps:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
10

Creation,
Registration,
Utilization,

De-registration

@ » ® d R

Destruction.

At creation time a specific filter implementation class is instantiated in some actor’s address
space. The filter is then registered with one or more FMS’s and utilized by any actors who, based
on any applicable policies, have the necessary privileges. When the filter is no longer pertinent,
or some actor with the necessary privileges deems it necessary, the filter is dropped from the
FMS'’s registry and destroyed.

Filter Chaining

Filters may be chained together into a Filter Chain (FC), a concept that is embodied within the
Phoenix architecture by an interface of the same name. A FC is the entity that an actor invokes
the filtration method on to enact a filter operation. This ability is provided by exposing the same
generic filtration method signature resident in all filters at the FC interface. Once a FC’s filter
method has been invoked, the first filter performs its coded operations and then returns its result
to the FC. The FC then iterates through each of the subsequent filters in the chain, if any are
designated, and returns the final result to the invoking actor. Filter Chain instances are created
by the FMS. However, the FMS does not maintain the FC instances. This is the responsibility of
the requisitioning actor. However the FMS does carry the burden of being the sanity check point
for filter chaining. When FC’s are created by the FMS, the service checks each step in the
requested filter chain to ensure that the next filter’s input type matches the previous filter’s
output type. If a mismatch is found, it is identified and a detailed exception is thrown by the
service back to the requisitioning actor. This operation has been designated as a responsibility of
the FMS in order to avoid the regurgitation of heavy logic such as this within the address space
of every Phoenix actor that wishes to create a filter chain. By placing this logic and processing in
a central (or distributed) service-oriented point, the Phoenix architecture provides an optimized,
cohesive, and discoverable solution to the data filtration problem plaguing today’s information
highways.

Information Brokering

Information brokering is defined as matching information requests to known instances of
information. The Phoenix Architecture defines an interface for an Information Brokering Service,
but does not place any specific limitations upon or attempt to constrain exactly how this service
is implemented.

Subscription is the term used to describe an actor's request for information. Subscriptions may
have one or more expressions associated with them. Subscription expressions define filter
parameters for selecting information that is of interest to the subscription's consumers and may
be as simple as a type identifier or as complex as a regular expression or and XQuery statement.
Subscriptions and expressions are defined using the context interfaces located within the
'subscription’ and ‘expression’ packages, respectively.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
11

Such open specification of the Information Brokering Service in the Phoenix Architecture allows
for an infinite number of possible service implementations, thus leaving the way ahead clear for
new and emerging brokering technologies such as bulk or priority-based expression processing.

Service Orchestration

Service orchestration is defined by the Design Team to be the chaining or linking of two or more
service instances to accomplish some specific task for one or more actors. Such chains can be
statically or dynamically constructed based on specific implementation requirements. The
decision to support one or both of these is made at implementation design time. The Phoenix
service’s dependence upon flexible structures such as the context and channel interfaces
provides implementation designers with a measure of much-needed flexibility when making such
design-time decisions.

The Phoenix Architecture does not define any interfaces for linking services in this way. By
leaving this as extensible as possible the archtiecture allows implementors to design their own
solutions customized for their specific requirements.

Use Case : Information Submission

One existing use case of service orchestration is the act of submitting information to the Phoenix
services. This is accomplished by interacting with and transmitting information instances to the
Submission Service. Once this service receives an information instance it must decide based on
local implementation logic and policy if and which Information Brokering and Repository Services
the information is going to be forwarded to. These service chains, Submission-to-Information
Brokering and Submission-to-Repository, are fundamental examples of simple service
orchestrations.

Architecture Specification

This section specifies the Phoenix Architecture by means of the interfaces between components.
At this level of the design, it is not necessary to define the internal workings of the components.
The actual functions, variables and operations will be determined by the implementation
designers, when an instance of the Phoenix concept is built.

This Phoenix architecture specification is divided into two types of interfaces: component and
service. The component and service interfaces have been sub-divided into a total of twenty units
by functionality. For example, the component interfaces in the “expression” group all provide
support for expression definition and processing functions.

For each interface, the specification includes a description of its purpose within the Phoenix
architecture. Where appropriate, the specification also includes the object’s attributes, its public
operations (also called methods), how the interface is used, and a list of related UML diagrams.
An operation is defined by this documentation as any action that is performed upon a set of
targets by a set of actors.

Component Interfaces

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12

Component interfaces provide functional pieces that may be used by one or more of the services.
The component interfaces have been sub-divided into functional groups, ordered by overall
importance to the architecture as a whole:

e Core

e Information
e Session

e Channel

e Expression

e Frame

° Event

e Stream
Core

The core group contains the interfaces, contexts, and supporting components that provide the
base functionality and meaning behind the Phoenix IM services. The core interfaces, listed
alphabetically, are:

e ActivationCallback

e BaseAttributeUpdateCallback
e BaseContext

e BasePersistentService

e BaseService

e BaseServiceConnector

e BaseServiceStub

e ConnectionContext

e ConnectorContext

e ContextContainer

e ServiceContext

e ServiceDescriptorContext
e ServiceStatus

e StubContext

ActivationCallback

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13

The Activation Callback is intended to provide actors a way to be asynchronously notified when
the assigned stub’s activation is complete and it is ready for use. Stubs may not be ready exactly
when the actor requests them due to network latencies or other dependencies. This concept was
designed explicitly to provide a solution to the service start-up circular dependency problem,
where service A depends on Service B and Service B depends on Service A.

Public Operations

onActivation() : void

This method is invoked by the assigned stub after stub activation has been completed.

BaseAttributeUpdateCallback

This interface accommodates the case where one or more of the values stored in a context has
been changed and said change needs to ripple down to interested parties.

Public Operations

getAttributesOiinterest() : List<String>

Retrieves any context attribute keys that the actor is interested in when updated.
This method returns the registered context attribute keys of interest

get Cal | backld() : String

Retrieves the unique ID associated with this callback.
This method returns the unique callback ID.

setAttributesOInterest(attributesOiinterest @ List<String>) : void
Sets any context attribute keys that the actor is interested in when updated.

Arguments:

e attributesOfinterest - The registered context attribute keys of interest
updat e(updat edAttri butes : Map<String, Object>) : void

This method is called to notify the interested party that context attributes of registered
interest have been updated. Note that an null entry for a specific key value in updated
attributes is associated with a context attribute that has been REMOVED.

Arguments:
e updatedAttributes - The attribute value changes provided by notifying context.

BaseContext

This entity is the super class for all Contexts within the architecture. It is primarily an internal
data structure that contains key-value pairs for holding data that describes a Context. It also
provides several "getter" and "setter" methods for these keys and values.

BaseContext has two required attributes that lay the foundation for all other Context sub-
interfacees: contextld, and attributes.

1. The contextld is the unique identifier for the Context.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
14

2. attributes is the Map of attribute names and their associated values.
Public Operations

addUpdat eCal | back(updat eCal | back : BaseAttri but eUpdat eCal | back) : void

This method allows for the addition of a context callback. The context implementation
itself will then, based on the registered attributes of interest contained within the
callback, invoke the callback providing the attribute changes.

Arguments:

e updateCallback - The callback used to notify interested actor of changes in
context attributes.

destroy() : void

Deletes any references to this object, and clears out any other internal data that the
context owns.
get Al | Attributes() : Map<String, Object>
This method returns all the attributes that are stored for this instance of the Context.
This method returns a Map that contains the key-value pairs for all attributes.
getAttribute(attributeNane : String) : Object
This method returns an Object the represents the value for the given attributeName key
name.

Arguments:

e attributeName - The name of the attribute that you want returned from the Map.
This is the key in the Map.

getAttributes(attributeNanmes : List<String>) : Mp<String, Object>

This method returns a Map that has the keys and values filled in for the given
attributeNames key names.

Arguments:

e attributeNames - A list of names (key values) of the attributes to be returned.
getContextld() : String
This method returns the unique identifier associated with this instance of specified
Context.
get Nane() : String
Retrieve the name for this context. This is an identifier that may be set by applications
and used for such things as policy enforcement.
i sFor ceDeepCopy() : bool ean
This method returns true if a copy operation invoked on this context is forced to return a

deep copy of the context and false if the decision whether to deep copy the context is left
up to the copier.

isSanitized() : bool ean

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
15

This method returns true if the context has been sanitized at least once. If not it returns
false.

removeAttribute(attributeNane : String) : void
Remove a specific attribute from this Context's attribute Map.

Arguments:

e attributeName - The name of the attribute to be removed.
removeAttributes(attributeNames : List<String>) : void
Remove the supplied attributes from the attributes Map.

Arguments:

e attributeNames - The names of the attributes to be removed.
renmoveUpdat eCal | back(cal | backld : String) : void
This method removes a registered context callback.

Arguments:

e callbackld - The unique identifier associated with the registered callback that is to
be removed.

sanitize() : void

This method removes all attribute values that should not be forwarded to the next actor.
setAttribute(attributeNane : String, attributeValue : Qobject) : void

This method takes a key-value pair and sets it within the Map maintained by the Context.

Arguments:

e attributeName - The name of the attribute that you want to add.

e attributeValue - The value for the attribute.

setAttributes(attributes : Map<String, Ooject>) : void

This method takes a Map of key-value pairs and sets each one within the Map maintained
by the Context.

Arguments:

e attributes - The Map of attributes and their new values.

set For ceDeepCopy(f orceDeepCopy : bool ean) : void
Set the flag telling whether or not copying this context forces a deep copy operation.

Arguments:

e forceDeepCopy - True if a copy operation invoked on this context is forced to
return a deep copy of the context and false if the decision whether to deep copy
the context is left up to the copier.

set Nane(nanme : String) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
16

Set the identifier to be used by applications for things such as policy enforcement.

Arguments:

e name - The identifier to be used by applications for things such as policy
enforcement.

BasePersistentService

This interface provides mechanisms for storing and restoring service state in the event of service
shutdown and restart.

Public Operations

| oad() : void
Load a stored service state from some persistent data store.

Raised Exceptions:

e Exception

store() : void
Store the service state in some persistent data store.

Raised Exceptions:
e Exception

BaseService

This interface defines the minimum set of methods required to identify a specific entity as a
Phoenix service. It includes a set of generic service maintenance functions that provide a basis

for controlling and administering the IM Services at runtime.

Public Operations

get Status() : ServiceStatus
Retrieve the identifier that signifies the current state of the associated service. The
possible values for this identifier are listed in the ServiceStatus enumeration.

Raised Exceptions:

e Exception

resune() : void
Resume normal service operations.

Raised Exceptions:
e Exception

start() : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
17

This method is used to start a service once it has been implemented and deployed to
some platform.

Raised Exceptions:

e Exception
stop() : void
This method is used to stop a service after it has already been started.

Raised Exceptions:

e Exception
suspend() : void
Temporarily suspend service operations.

Raised Exceptions:

e Exception
Protected Operations

get Servi ceContext () : ServiceContext

Retrieve the context object that contains the current state of the associated service as
well as its description.

Raised Exceptions:
e Exception
BaseServiceConnector

A base interface defining the minimal methods required to be considered a service connector.

Public Operations

activate() : void

This method is called by the parent service to activate the connector so it is ready for
stubs to hit.

Raised Exceptions:

e Exception
deactivate() : void

This method de-activates the connector, which suspends all invocations from the
connector to the actual service. Note that de-activating a connector does NOT destroy it.

Raised Exceptions:

e Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
18

get Connect or Context () : Connect or Cont ext

This method returns the connector context that is associated with the service.

Raised Exceptions:
e Exception

BaseServiceStub

All services are interacted with via the connector and stub model. A well known example of this
model is the Remote Method Invocation (RMI) model. The connector construct represents the
service side of a physical connection between the service and an actor. The stub is the actor side
of the same physical connection. All methods exposed through the connector are to be
implemented within the stub as well. The stub is the physical construct that the actor invokes
methods upon. These method invocations are forwarded to the connector by the stub and
onward through the connector to the actual service itself. All return values for method
invocations follow a reciprocal path through the connector and stub back to the actor.

Public Operations

activate(async : boolean) : void
Activate this stub locally.

Arguments:

e async - This parameter tells the stub if the encompassing activation call is
synchronous or asynchronous.

Raised Exceptions:

e Exception

deactivate() : void

De-activates the stub which means that all invocations from stub to its associated
connector are suspended. NOTE that de-activating a stub does NOT destroy it.

Raised Exceptions:

e Exception
get St ubCont ext () : St ubCont ext
This method returns the current instance of the StubContext.

Raised Exceptions:

e Exception

i sActivated() : bool ean

This method returns true if its current state is ACTIVATED, and false otherwise.

Raised Exceptions:

e Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
19

regi sterActivationCall back(cal | back : ActivationCallback) : void
This method sets the ActivationCallback for the stub.

Arguments:

e callback - The callback to be fired when the stub is activated.

Raised Exceptions:

e Exception

ConnectionContext

This context describes a control channel connection between an actor and a service. It contains

the four minimally necessary items for constructing a physical connection between two nodes
including the host address, host port, connector identifier, and protocol used for the connection.

Public Operations

get Connect or Address() : String

Retrieve the address of the registry used by the connector.
get Connector Nane() : String

Retrieve the name of the connector. For use by technologies such as RMI that require a
unique identifier.

get ConnectorPort() : int

Retrieve the port used by the connector and stub.
getProtocol () : String

Retrieve the protocol being used by the parent control channel.
set Connect or Addr ess(connect or Addess : String) : void

Set the address of the registry used by the connector.

Arguments:

e connectorAddess - The address of the registry used by the connector.
set Connect or Nane(connectorNane : String) : void

Set the name of the connector. For use by technologies such as RMI that require a unique
identifier.

Arguments:
e connectorName - The name of the connector. For use by technologies such as RMI
that require a unique identifier.
set Connect or Port (connectorPort : int) : void

Set the port used by the connector and stub.

Arguments:

e connectorPort - The port used by the connector and stub.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
20

set Prot ocol (protocol : String) : void
Set the protocol being used by the parent control channel.

Arguments:

e protocol - The protocol being used by the parent control channel.

ConnectorContext

This Context maintains and describes the state of a connector owned by a service. It contains
two required attributes: svcCtx and svcRef.

1. The svcCtx is a copy of the Service Context that describes the service associated with the
connector.

2. The svcRef is a reference or pointer to the actual service instance that this connector is
associated with.

Public Operations

get Service() : BaseService

This method returns the actual service instance that the connector is holding.
get Servi ceContext () : ServiceContext

This method returns the copy of the service context that describes the service that this
connector is connected to.

set Servi ce(service : BaseService) : void
Set the reference to the associated service for this Context's connector.

Arguments:

e service - The reference to the associated service for this Context's connector.

ContextContainer
An interface defining a container for a single context.

Public Operations

get Context () : BaseContext

Retrieve the context stored within this container.
set Context(ctx : BaseContext) : void

Set the context to be stored by this container.

Arguments:

e ctx - The context to be stored by this container.

updat eCont ext (attri but esAndVal ues : Map<String, Object>) : void

Updates the attributes and values stored by the context within this container.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
21

Arguments:

e attributesAndValues - The new attributes and their respective values.

ServiceContext

This Context maintains a description of the service, its capabilities, and any state data being

maintained by the service.

Public Operations

get Functi onal Description() : Map<String, Object>

Retrieve the functional description of the service. This description may include details
such as: what operations the service supports, what information types it may perform
operations upon, etc. The exact contents of this description are left up to the
implementation designers to determine.

get Operati onal Description() : Map<String, Object>

Retrieve the operational description of the service. This description may contain details
such as: what types of information the service is currently operating upon, performance
metrics, etc. The exact contents of this description are left up to the implementation

designers to determine.
get Servi ceDescriptor() : ServiceDescriptorContext
Retrieve the descriptor for this service.
get Servi ceName() : String
Retrieve the human readable name for the associated service.

get Servi ceStatus() : ServiceStatus

Retrieve the identifier for the current status of the described service. Possible values for

this identifier are defined in the ServiceStatus enumeration.
get Servi ceTypes() : List<String>

Retrieve the listing of identifiers that signal what types of functionality the described

service supports. The values for this field are implementation specific.
set Functi onal Descri ption(desc : Map<String, OCbject>) : void

Set the functional description for the service that this context describes.

Arguments:

e desc - The functional description of the service that this context describes.
set Qper ati onal Descri ption(desc : Map<String, Object>) : void
Set the operational description of the service that this context describes.

Arguments:

e desc - The operational description of the service that this context describes.
set Servi ceDescriptor(context : ServiceDescriptorContext) : void

Set the descriptor for this service.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
22

Arguments:

e context - The descriptor for this service.

set Servi ceNanme(serviceNane : String) : void
Set the human-readable name for the service that this context describes.

Arguments:

e serviceName - The human-readable name for the service that this context
describes.

set Servi ceStatus(status : ServiceStatus) : void
Set the status flag for the service that this context describes.

Arguments:

e status - The current status of the service that this context describes.
set Servi ceTypes(types : List<String>) : void

Set the list of identifiers stating what service interfaces the service that this context
describes implements.

Arguments:

e types - The list of identifiers for the service interfaces that the service that this
context describes implements. Possible values are listed in the ServiceType
enumeration.

ServiceDescriptorContext

This context is used to describe a service. The contents of this context is defined in part by the
helper methods enumerated within its interface and in full by the set of schemas stored by the
Service Brokering Service. These schemas describe the searchable elements and attributes of
service descriptions.

Public Operations

get Servi ceName() : String
Retrieve the service name.
get Servi ceTypes() : List<String>

Retrieve the list of service types that identifies the Phoenix service interfaces that the
described service implements.

i stControl Channel s() : List<BaseServiceStublnterface>
Retrieve the list of stubs that embody the control channels for this service.
| i st Control Channel Types() : List<String>

Retrieve a list of the control channel types (I.E. RMI, PIC, etc.) from this descriptor.
|'i st Support edExpressi onTypes() : List<String>

Retrieve the list of expression types supported by this service, if any.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
23

I'i st Supportedl nformati onTypeNames() : List<String>

Retrieve the list of information type names supported by this service, if any.

ServiceStatus
This enumeration contains the possible states that a Phoenix service can be in at any given time.

Public Fields

AVAI LABLE
The service has been started and is ready for use by other actors.
STARTED
The service has been started and is ready for use by other actors.
STARTI NG
The service is currently in the process of initializing its internal components.
STOPPED
The service has been stopped. The service may be restarted.
STOPPI NG

The service is currently in the process of shutting down its internal components and is no
longer able to be used by other actors.

SUSPENDED

Reflects a service whose normal operations have been temporarily suspended.
UNAVAI LABLE

The service has entered an error state that has made it unavailable for use by other
actors.

StubContext

Maintains and describes the state of a stub owned by an actor. The Stub Context contains a copy
of the ServiceContext, with the attribute name svcCtx, that describes the associated service. This
copy of the ServiceContext may be filtered for data that actors may not need to know or that the
associated service does not want actors to know about.

Public Operations

get Servi ceContext () : ServiceContext

This is a (possibly modified) copy of the context for the service the stub is associated
with. This copy is maintained by the StubContext so that a stub may be able to
accurately describe its associated service's capabilities or other data about the service
that may be important to share with the stub.

set Servi ceContext(ctx : ServiceContext) : void
Set the ServiceContext for the stub's associated service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
24

e ctx - The context for the stub’s associated service.
Information

The information group provides the interfaces, contexts, and supporting components that define
the information to be managed. This group also contains the context that describes the services
performing the management operations. The information interfaces are:

e ActionContext

e ConfirmationType

e Information

e InformationAction

e InformationChannel

e InformationChannelContext
e InformationContext

e InformationlnputChannel

e InformationOutputChannel

e |InformationServiceContext

ActionContext

The Action Context is used to describe the actions that can be invoked on information of specific
types. This Context has two required attributes: infoTypeActions and infoTypeNames. The
infoTypeActions attribute is a listing of information actions that may be invoked on information.
The entries within this list correlate to the entries within the list of infoTypeNames. The
infoTypeNames attribute is a listing of information type identifiers that defines what types the
respective information actions are being performed upon.

Public Operations

get I nfoTypeActions() : List<InformationAction>

This method returns all the information actions that may be invoked on information that
corresponds to the Type Names list.

get I nfoTypeNanes() : List<String>
This method returns a list of information type name identifiers that defines what types
the respective information Type Actions are being performed upon.

set | nfoTypeActions(actions : List<InformationAction>) : void
Set the list of actions being performed upon information.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
25

e actions - The list of actions being performed upon information.

set | nfoTypeNanes(typeNanes : List<String>) : void
Set the information type names for this context.

Arguments:
e typeNames - The list of information type names.

ConfirmationType

This enumeration contains the possible types of information delivery receipts that can be
requested by producers of managed information.

Public Fields

CONSUMER_ACK

This signals that the producer of the managed information wants a delivery receipt
stating that the registered consumers for the information have indeed received it.

NONE

This signals the Submission Service that the producer wants to blindly submit information
to be managed without worrying about whether or not the information was submitted
successfully.

SUBM SSI ON_ACK

This signals the Submission Service that the producer wants confirmation of receipt of
each instance of information as it is received by the Submission Service.

SUBM SSI ON_NACK

This signals the Submission Service that the producer wants to be notified when one of
their information submission attempts fails. The meaning of "submission failure" is left to
the implementation designers to define.

Information

This interface is used to wrap the data being managed as information. Instances of this interface
must understand the following attributes: metadata, payload, infoTypeName, and
informationContext.

1. The metadata is the structured data that describes the actual information being
managed. This may be XML, some other markup language, a specific set of bytes, or a
collection of attribute-value pairs. The makeup of the context really depends upon the
particular implementation of the abstract architecture. The structure and format of the
metadata can be different for different types of Information.

2. The payload is the actual information being managed.
3. The infoTypeName is the type identifier for this instance of managed information.

4. The informationContext is the Context that provides additional characterization for this
piece of information.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
26

Information may also be degraded, meaning that it has been subject to some form of loss of
content during its lifecycle. Once information has been degraded, it can never be upgraded. The
degradation flag serves as an indicator to Phoenix actors that what they received is not the
pristine information instance, but a degraded copy of the original instance. The Phoenix
architecture does not prevent said actor from attempting to retrieve the pristine information
instance, this is the job of implementation level security components such as authorization
policies. Information degradation is thought to be embodied by many different functions, which is
why the Information Context contains an integer variable designating the acceptable degradation
modes available for a specific instance of information.

Public Operations

getInformati onContext () : Informati onContext

Retrieve the Context providing additional characterization for this piece of information.
get Met adata() : Object
Retrieve the metadata for this instance of managed data. If none exists for this instance,

then the payload must not be missing as well and this field should contain some kind of
identifier or pointer that enables the retrieval of this instance's metadata.

get Payl oad() : Object
Retrieve the raw data that is being managed by the IM Services. If none exists for this

instance then the metadata must not be missing as well and this field should contain
some kind of identifier or pointer that enables the retrieval of this instance's payload.

get TypeNane() : String
Retrieve the type name for this information instance. This type identifier maps to an
information type definition.

i sDegraded() : bool ean
Indicate whether the information has been degraded from its original form. Degradation
refers to any filtering or other modification that that irreversibly reduces the quality of

information: for instance, lossy compression applied to reduce information size.
Degradation may be necessary for quality-of-service reasons.

mar kAsDegr aded() : void

Set the flag indicating that the information has been degraded. Degradation refers to any
filtering or other modification that that irreversibly reduces the quality of information: for
instance, lossy compression applied to reduce information size. Degradation may be
necessary for quality-of-service reasons. Because degradation is irreversible, once this
method is called, the information is irrevocably marked as degraded. There is no way to
"unmark" information as degraded. For ease of code maintainability, it is strongly
recommended to call this function after every modification that degrades information.

set Met adat a(net adata : Object) : void
Set the metadata for this instance of managed data.

Arguments:

e metadata - The metadata for this instance of managed data.
set Payl oad(payl oad : Object) : void

Set the payload for this instance of managed data.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
27

Arguments:

e payload - The payload for this instance of managed data.

set TypeNane(typeNane : String) : void
Set the type name for this information instance. This type identifier maps to an
information type definition.

Arguments:

e typeName - The type name for the information instance.

InformationAction

This enumeration contains the possible actions that me be implemented upon instances of
managed information.

Public Fields

ARCHI VE

Store the information instance in a high-capacity, high-latency data store for later
retrieval.

BROKER

Broker the information for delivery to interested consumers.
DI SSEM NATE

Deliver the information to interested consumers.
PERSI ST

Store the information instance in a low-capacity, low-latency data store for later retrieval.
QUERY

Query for stored information.
SUBM T

Submit information to be managed.
SUBSCRI BE

Register the intent to receive information as it is brokered.

InformationChannel
An interface for information channels.

Public Operations

get I nf or mati onChannel Context () : | nformati onChannel Cont ext
Retrieve the information channel specific context.

i sTyped() : bool ean

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
28

Check if this channel is typed or not. A typed information channel sends and receives
information of specified information types. An un-typed information channel can send and
receive information of any information type.

listInformati onTypeNanmes() : List<String>

Retrieve the list of information type names that this channel supports. Any information
not of one of these types will cause an exception to be raised.

InformationChannelContext
A channel context specific to typed information channels.

Public Operations

l'istlnformati onTypeNames() : List<String>

Retrieve the list of information types that this channel supports.
set I nformati onTypeNanes(typeNanes : List<String>) : void

Set the list of information types that this channel supports.

Arguments:
e typeNames - The list of information types that this channel supports.

InformationContext

This Context provides a container for holding additional auxiliary data describing or
characterizing a piece of information being managed by the Phoenix IM Services. A piece of
information may or may not contain an InformationContext. Special flags for information include
the: persistenceFlag, brokeringFlag, receiptRequestFlag, and degradableFlag.

1. The persistenceFlag, if provided, signifies that the information should be persisted. In the
Phoenix architecture this would be used by the Submission Service, telling it to interact
with one or more Repository Services.

2. The brokeringFlag, if provided, signifies that the information is to be forwarded for
brokering purposes. In the Phoenix architecture this would be used by the Submission
Service, telling it to interact with one or more Information Brokering Services.

3. The receiptRequestFlag is the flag that defines what type delivery confirmation has been
requested for this instance of managed information, if any.

4. The degradableFlag signals what mode(s) of degradation are allowed for this instance of
managed information.

Public Operations

addConsuner s(consuner Channel s : Li st<Channel Context>) : void

Stamp this information context with a set of consumers for the information. This is an
append operation.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
29

e consumerChannels - The set of consumer channels to use to deliver this
information instance.

get Al | owedDegr adat i onMode() : int

Retrieve the degradation mode flag, which signals what mode(s) of degradation are
allowed for this instance of managed information. Semantics of this flag are
implementation dependent; at minimum it should be treated like a boolean (zero means
no degradation allowed, non-zero means at least one kind of degradation allowed). It is
anticipated that in some implementations the degradation flag may be a bitmask
encoding multiple degradation modes, all of which are allowed.

get BrokeringFlag() : int

Retrieve the flag that signals what brokering mode to use for this instance of managed
information.

get Consumer s() : List<Channel Cont ext >

After an Information Brokering operation, this attribute contains the list of channels for
the consumers that wish to receive the information instance.

get Persi stenceFl ag() : int

Retrieve the flag that signals what type of persistence mode is being requested for this
instance of information. Persistence modes are defined by the individual implementations
of the Phoenix architecture.

get Recei pt Request Fl ags() : List<ConfirmtionType>

Retrieve the flags that signal what types of delivery confirmation is being requested by
the producer of the information (if any).

set Al | owedDegr adat i onMode(degradabl eFlag : int) : void

Set the degradation mode flag for this instance of information. The degradable flag
indicates how information-degrading filters are permitted to modify the information
(which may be necessary for quality-of-service purposes). Semantics of this flag are
implementation dependent; at minimum it should be treated like a boolean (zero means
no degradation allowed, non-zero means at least one kind of degradation allowed). In
some implementations the value of this flag may be a bitmask encoding multiple
degradation modes, all of which are allowed.

Arguments:

e degradableFlag - The degradation mode flag for this instance of information.

set Brokeri ngFl ag(brokeringFlag : int) : void
Set the brokering mode flag for this instance of information.

Arguments:

e brokeringFlag - The brokering mode flag for this instance of information.
set Per si st enceFl ag(persi stenceFlag : int) : void
Set the persistence mode flag for this instance of information.

Arguments:

e persistenceFlag - The persistence mode flag for this instance of information.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
30

set Recei pt Request Fl ags(flags : List<Confirmati onType>) : void
Set the receipt request confirmation flags for this instance of information.

Arguments:
e flags - The receipt request confirmation flags for this instance of information.

InformationlnputChannel
An interface for an information input channel.

Public Operations

read() : Information
Read a single information instance from the channel.

Raised Exceptions:

e ChannelException
read(nunber ToRead : int) : List<Information>

Read a set of information instances from the channel.

Arguments:

e numberToRead - The number of information instances to read from the channel.
This method will not return until it reads this number of instances.

Raised Exceptions:
e ChannelException

InformationOutputChannel
This interface defines an information-specific output channel.

Public Operations

wite(information : Information) : void
Writes an instance of information to the Channel.

Arguments:

¢ information - The information instance that is to be written to the Channel.

Raised Exceptions:

e ChannelException
wite(information : List<lInformation>) : void

Writes an array of instances of information to the Channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
31

Arguments:

¢ information - The information instances that are to be written to the Channel.

Raised Exceptions:
e ChannelException

InformationServiceContext

This context is used to define a set of attributes that are common to the Contexts describing the
services that operate upon Information within the Phoenix architecture. This includes the list of
supported Information types, the associated service's current and maximum throughput rate (in
Information Context instances per second), and a list of the actors who currently have an open
and active Data Channel with the associated service.

An Information Service Context supports at least the following attributes: supportedinfoTypes,
currentThroughputRate , maxSupportedThroughputRate, and connectedActors.

1. The supportedinfoTypes is a list of type identifiers that the associated Information service
currently supports. It is up to the implementation of the abstract architecture to define
what is meant by "supporting" an Information type. This is the list of information types
that this service is allowed to operate upon.

2. The currentThroughputRate is the aggregate data throughput rate of all channels
currently connected to this service. It is up to the implementation of the abstract
architecture to define the unit of measure for this variable's value.

3. The maxSupportedThroughputRate is the maximum supported aggregate throughput rate
for the service. Again, it is up to the implementation of the abstract architecture to define
the unit of measure for this variable's value.

4. The list of connectedActors contains the identifiers for the actors who currently have
channels established with the associated service.

Public Operations

addConnect edActor (actorld : String) : void
Add a newly connected actor to the list of tracked actors.

Arguments:

e actorld - The actor identifier for the newly connected actor.

get Connect edActors() : List<String>
Retrieve the list of identifiers for the actors who are currently connected to this service
over a data channel.

get Current Thr oughput Rate() : | ong
Retrieve the metric describing the current information throughput rate. The actual unit of
measure is left up to the implementation.

get MaxSupport edThroughput Rate() : | ong

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
32

Retrieve the theoretical maximum throughput rate for this service. The actual unit of
measure is left up to the implementation.

get Supportedl nformati onTypes() : List<String>

Retrieve the list of identifiers for the information types that are currently supported by
the associated parent service.

removeConnect edActor (actorld : String) : void
Remove the identified actor from the list of connected actors.

Arguments:

e actorld - The identifier for the actor to be removed.

Session

The session group contains the interfaces that define the constructs used to support session
management:

e ActorContext
e SessionContext

e SessionTrack

ActorContext

This Context is used to describe an entity that interacts with one or more Phoenix services. It
may contain attributes describing security credentials, role set(s), QoS characteristics, or the
session identifier associated with this actor. The Actor Context is defined as the IM Service's view
of the actor and contains state information such as the lists of registered subscription and query
expressions for this actor. Actor contexts are tracked by the Session Management Service and
utilized by this service to create sessions.

Public Operations

get Sessionld() : String

This method returns the sessionld that is the unique identifier of the session associated
with this Actor Context. This is stored here to provide a seamless ability to trace back
from the Actor Context to its Session Context.

set Sessi onld(sessionld : String) : void
Set the session identifier for this actor.

Arguments:
e sessionld - The session identifier.

SessionContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
33

The Phoenix architecture identifies interactions between individual actors by creating sessions for
each semi-permanent interactive information exchange between a subset of the IMS services
and actors. Session constructs contain data about the actor for whom the session has been
created. Most control methods defined by the Phoenix architecture expect a set of session
identifiers to be supplied with each invocation. These describe the pedigree of the control
invocation and are useful for authorization purposes. The Design Team has taken the time to
clearly define what is expected to be stored within a Session construct in order to maximize the
utility of this construct and minimize the potential negative impacts upon the IM Services. The
contents of a session construct can be found described within the UML model.

The Session Context is used to describe an actor's Session(s) that have been registered with the
Phoenix Session Management Service. It contains a copy of the actor-provided ActorContext. The
Session Context is defined as the IM Service's view of a registered actor's intended usage of the
services. This context should contain some kind of date-time based attribute that enables
transactional updates to Sessions (thread-safe updates).

Session Contexts have three required attributes: actorContext, defaultBroker, and
lastCommitTime.

1. The actorContext attribute is a copy of or pointer to the Actor Context object associated
with this Session Context. This, along with the session identifier contained within the
ActorContext, provides a seamless association between an actor and its session(s).

2. The defaultBroker is a copy of or pointer to the control stub for the Service Broker
Service to be used by the Session associated with this Session Context. This is used as
the Session's broker for services, unless its value is null. In this case it is assumed that
the actor for this Session Context already knows how to communicate with the services it
wishes to make use of.

3. The lastCommitTime is a timestamp used by the Session Management Service to de-
conflict updates to the Session Context. This is necessary because multiple actors of the
Phoenix IM Services may try to update the Session at nearly the same time and with
vastly different versions of the same Session Context. It is up to the implementation to
determine which update call will be used to maintain the state of the context.

Public Operations

get Act or Context () : ActorCont ext

Returns the ActorContext for the actor associated with this session.
get Broker () : BaseServiceStub

Returns the control stub for the Service Broker Service, if this field has been set.
get Ti neLast Updated() : long

Returns the date-time stamp signifying when this context was last updated. This field is
used to track update requests and determine whether or not the requestor had an up-to-
date copy of the context to begin with.

set Actor Context (ctx : ActorContext) : void
Set the ActorContext for the actor associated with this session.

Arguments:

e ctx - The ActorContext for the actor associated with this session.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
34

set Broker (stub : BaseServiceStub) : void
Set the control stub for the ServiceBrokeringService for this session (if applicable).

Arguments:

e stub - The control stub for the ServiceBrokeringService for this session (if
applicable).

timeStanp() : void

Stamp this Context with the current date and time.

SessionTrack

This object contains session identifiers used to track the usage of services and, potentially, to
make policy decisions regarding how services may be used by actors.

A SessionTrack instance contains a listing of session identifiers for all actors who have been part
of the associated service method invocation chain. Each member of the invocation chain should
stamp the SessionTrack instance with their own session identifier before either performing any
associated actions or passing along the invocation to another actor.

Public Operations

addSessi onl d(sessionld : Object) : void
Add the session identifier of the current invocator to the method invocation pedigree list.

Arguments:

e sessionld - The session identifier to add to the pedigree list for this associated
method invocation chain.

get Ori gi nati ngSessionld() : Object

Returns the originating actor's session identifier. This is the actor who began the
associated method invocation chain.

get Current Sessionld() : Object

Returns the session identifier for the actor who last invoked this method.
get Sessi onPedi greeLi st() : List<Object>

Returns the complete listing of all session identifiers for all actors who have invoked the
associated service method as part of the current method invocation chain.

Channel

The channel group provides the interfaces, contexts, and supporting components that define the
data and control channels for interacting with the services that perform some kind of operation
upon managed information. The channel interfaces are:

e BaseChannel

e BaseChannelService

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
35

e BaseChannelServiceConnector
e BaseChannelServiceStub

e BytelnputChannel

e ByteOutputChannel

e ChannelContext

e ChannelException

e ChannelServiceDescriptorContext
e ChannelState

e EndPointContext

e Handler

e InputChannel

¢ InputChannelContext

e InputHandler

e OutputChannel

e ProtocolContext

e TransportProtocolContext

BaseChannel

This interface defines the basic methods that are to be shared by all Channels. Channels are
expected to contain a ChannelContext that defines what the channel is and tracks its current
state and status. Channels are the means through which information, in whatever format, are
moved between Phoenix services and are the preferred method of moving information, again in
whatever format, between the Phoenix Dissemination Service and its registered consumers.

Public Operations

get Channel Context () : Channel Cont ext
Retrieve the ChannelContext that describes this Channel instance.
This method returns a ChannelContext.

i sActive() : bool ean
Depending on if this is an input or output channel, check if the channel has been opened
or connected.

i slnput() : bool ean
This method returns true if the channel instance is an implementation of the

InputChannel interface, and false if the channel is an implementation of the
OutputChannel interface.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
36

updat eCont ext (attri but esToUpdate : Map) : void

Update the ChannelContext that describes this Channel. This will potentially alter the
Channel instance itself.

Arguments:

e attributesToUpdate - The attributes to be updated along with their associated new
values.

BaseChannelService

This service interface extends the Base Service and provides administration methods for
managing a service's channels.

Public Operations

confi gureAct or Qut put Channel Cont ext (sessi onTrack : SessionTrack, channel C x
Channel Cont ext) : Channel Cont ext

Associate the given channel context with a service input channel and session identifier
(from the SessionTrack). Implementations of this method may automatically create
service input channels when an output channel is requested.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e channelCtx - The context that describes the output channel to be created by the
actor.

Raised Exceptions:

e Exception

creat el nput Channel (sessionTrack : SessionTrack, channel Ctx : Channel Context)
String

Create a new input channel for the service to use to communicate with another actor.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e channelCtx - The configuration to use for the new input channel.

Raised Exceptions:

e Exception
creat eQut put Channel (sessionTrack : SessionTrack, channel Ctx : Channel Context)
String

Create a new output channel for the service to use to communicate with another actor.
This method should be used by orchestration services to align services into information
pipelines.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
37

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e channelCtx - The configuration to use for the new output channel.

Raised Exceptions:

e Exception
dest r oyl nput Channel (sessionTrack : SessionTrack, channelld : String) : bool ean
Destroy the identified input channel.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e channelld - The identifier for the channel to be destroyed.

Raised Exceptions:

e Exception
dest royQut put Channel (sessi onTrack : SessionTrack, channelld : String) : bool ean
Destroy the identified output channel.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e channelld - The identifier for the channel to be destroyed.

Raised Exceptions:

e Exception
get Avai | abl el nput Channel s(sessionTrack : SessionTrack): List<Channel Context>

Retrieve the list of channel contexts that describe the locations of the input channels for
this service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception
get Modi fi abl eServi ceAttributes(sessionTrack : SessionTrack): Mp<String, Object>

Return the hierarchical view of service attributes that can be modified by external actors.
For example, this method could return the list of identifiers for the channels that the
service owns and their settings and the channel filters and their settings.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
38

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception

get Servi ceAttri buteVal ue(sessionTrack : SessionTrack, attributeName : String)
hj ect

Retrieve an attribute's value from the ServiceContext for this service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e attributeName - The identifier for the attribute whose value should be retrieved.

Raised Exceptions:

e Exception

get Servi cel d(sessionTrack : SessionTrack) : Object

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception

resunmeChannel s(sessi onTrack : SessionTrack, channellds : List<String>) : void
Resume normal operations for the identified channels.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e channellds - The set of channel identifiers for the channels to resume normal
operations on.

Raised Exceptions:

e Exception

set Servi ceAttri but eVal ue(sessionTrack : SessionTrack, attributeNanme : String,
attri butevalue : Object) : void

Set an attribute's value in the ServiceContext for this service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e attributeName - The identifier for the attribute whose value should be set.

e attributeValue - The value of the identified attribute.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
39

Raised Exceptions:

e Exception
suspendChannel s(sessionTrack : SessionTrack, channellds : List<String>) : void

Suspend normal channel operations on the identified channels.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e channellds - The list of channel identifiers for the channels to suspend normal
operations on.

Raised Exceptions:

e Exception

updat eChannel (sessionTrack : SessionTrack, channelld : String, updateContext
Channel Context) : void

Update the configuration for the identified channel.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e channelld - The unique identifier of the channel to be updated.
e updateContext - The channel context containing the settings to be updated.

Raised Exceptions:
e Exception
BaseChannelServiceConnector

This interface extends the Base Service Connector and the Base Channel Service, thereby
inheriting, and thus exposing, all methods from that service.

Public Operations

(Inherited from the Base Channel Service)

BaseChannelServiceStub

This interface represents a stub for the base channel service and extends the Base Service Stub
and the Base Channel Service. It exposes all methods inherited from the Base Channel Service in
addition to those methods listed here that are specific to the stub.

Public Operations
connect (sessi onTrack : SessionTrack) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
40

Connects the stub to its corresponding connector.

Arguments:

e sessionTrack - Contains the identifier for the session whose owner is attempting
to connect this stub.

Raised Exceptions:

e Exception
di sconnect (sessionTrack : SessionTrack) : void

Disconnect the stub from its corresponding connector.

Arguments:

e sessionTrack - Contains the identifier for the session whose owner is attempting
to disconnect this stub.

Raised Exceptions:

e Exception
resune(sessionTrack : SessionTrack) : void

Resume forwarding method invocations to its corresponding connector.

Arguments:

e sessionTrack - Contains the identifier for the session whose owner is attempting
to resume operations upon this stub.

Raised Exceptions:

e Exception
suspend(sessi onTrack : SessionTrack) : void

Suspend the stub, keeping the connection open to the connector but not passing any
method invocations to it until the stub is resumed.

Arguments:

e sessionTrack - Contains the identifier for the session whose owner is attempting
to suspend operations upon this stub.

Raised Exceptions:
e Exception
BytelnputChannel

A byte specific input channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
41

read(bytes :

Read

byte[]) : int
a set of bytes from the channel. This method returns the number of bytes read from

the channel.

Arguments:

bytes - The byte array to read the bytes from the channel into.

Raised Exceptions:

ChannelException

read(bytes : byte[], offset : int, length : int) : int

Read

a set of bytes from the channel beginning at the specified offset and continuing for

the specified length. This method returns the number of bytes read from the channel.

Arguments:

bytes - The byte array to read the bytes from the channel into.

offset - The offset index for the bytes array. Will start filling the bytes array from
this point.

length - The number of bytes to read from the channel.

Raised Exceptions:

ByteOutp

ChannelException

utChannel

A channel interface for writing bytes.

Public Operations

wite(b : byte[]) : void
Write the given bytes to the output channel.
Arguments:

e b - The bytes to be written to the output channel.

Raised Exceptions:

wite(b :

e ChannelException

byte[], offset : int, length : int) : void

Write the given bytes to the output channel using the specified parameters.

Arguments:

e b - The bytes to be written to the output channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
42

e offset - The array index of the starting position within the given array, b, to read
data from.

e length - The number of bytes to write to the channel from the given array, b.

Raised Exceptions:
e ChannelException

ChannelContext

This context is used to maintain specific parameters associated with the Input and Output
Channels for a particular Transport. This context may be needed to supply additional parameters
to an intermediary entity that resides between a pair of Input and Output Channels, such as data
adaptors, guard technologies, or possibly routers such as Sarvega or Layer 7 boxes.

Public Operations

get Appl i cati onProt ocol Context () : Protocol Context

Retrieve the context containing the application level networking layer settings. These are
expected to be strings that identify the protocol such as "information", "event", "byte",
and "frame".

get Channel State() : Channel State

This method returns the channelState, whose values are defined by the ChannelState
enumeration. This value describes the current state of the Channel associated with this
Context.

get EndPoi nt Cont ext () : EndPoi nt Cont ext

Retrieve the EndPointContext that contains the URI for the endpoint of the associated
channel.

get Sessi onTrack() : SessionTrack

Retrieve the session track associated with this channel.
get Transport Prot ocol Context () : Transport Protocol Cont ext

Retrieve the context that describes the transport level networking layer section.
set Appl i cati onProt ocol Cont ext (context : Protocol Context) : void

Set the context containing the application level networking layer settings.

Arguments:

e context - The context containing the application level networking layer settings.
set Channel State(state : Channel State) : void

Set the current state of the channel.

Arguments:

e state - The current state of the channel. Possible values are defined by the
ChannelState enumeration.

set EndPoi nt Cont ext (cont ext : EndPoi nt Context) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
43

Set the EndPointContext that contains the URI for the endpoint of the associated channel.

Arguments:

e context - The EndPointContext that contains the URI for the endpoint of the

associated channel.

set Sessi onTrack(sessionTrack : SessionTrack) : void
Set the session track associated with this channel.

Arguments:

e sessionTrack - The session track associated with this channel.

set Transport Prot ocol Cont ext (context : setTransportProtocol Context) : void
Set the context defining the transport level network settings.

Arguments:
e context - The context defining the transport level network settings.

ChannelException
The ChannelException class represents an exception that is specific to Channel operations.

Public Operations

get Channel Context () : Channel Cont ext

Retrieve the ChannelContext that is related to the raised exception.
get Sessi onTrack() : SessionTrack

Retrieve the SessionTrack that is related to the raised exception.

ChannelServiceDescriptorContext
A service descriptor context for describing services with input channels.

Public Operations

I'istlnputChannel Contexts() : List<Channel Context>

List the contexts describing this service's input channels.

ChannelState
This enumeration lists the possible states for a Channel.

Public Fields

ACTI VE

Depending on whether the channel is an input or output channel, it is either listening for

connections or is connected.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
44

| NACTI VE
Depending on whether the channel is an input or output channel, it is either disconnected
or has stopped listening for connections.

NEW

The channel has been created but not yet opened or connected.
SUSPENDED
A channel that has been created and activated, but whose channel operations (read or

write) have been temporarily suspended. What to do with attempted reads/writes is up to
the implementation.

EndPointContext

This context contains the collection of attributes that describe a physical end point associated
with an actor. This is currently used for defining the end points of subscriptions and queries but
may also be used for defining end points for services. The required attributes for
EndPointContext instances are: uri and inBandConsumer.

1. The uri is the actual physical location of the consumer on the network. The URI syntax is
consistent with the Internet Engineering Task Force (IETF) Request for Comments 1630
and is typically defined as a combination of Internet Protocol (IP) address, port, and wire
protocol. In the Phoenix architecture, the URI may also contained other encoded
information that may be of use for such things as underlying channel provisioning, etc.

2. The inBandConsumer flag is used to denote the difference between in-band and out-of-
band consumers. This will signal the services whether or not this consumer expects
delivery of Information through IMS Channels or from other means. This is a boolean
flag.

Public Operations

get Host Address() : String

Retrieve the string that contains the host location for this end point. For example,
192.168.2.13

getHostPort() : int

Retrieve the port for the end point to communicate on. For example, 2222
get Local Port () : int

Retrieve the local port for the end point to communicate through. For example, 12121
i sl nBandConsuner () : bool ean

Retrieve the flag that specifies whether or not this consumer is an in-band or out-of-band
consumer. In-band consumers receive information from Phoenix services directly via
channels. Out-of-band consumers receive data from external actors and only use the
Information Brokering capability of Phoenix to identify what information is of interest.

set Host Address(host : String) : void

Set the string that contains the host location for this end point. For example,
192.168.2.13

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
45

e host - The string that contains the host location for this end point. For example,
192.168.2.13

set Host Port(port : int) : void
Set the port for the end point to communicate on. For example, 2222

Arguments:

e port - The port for the end point to communicate on. For example, 2222

set | nBandConsuner Fl ag(i sl nBand : bool ean) : void
Set the flag for in-band or out-of-band consumer.

Arguments:

e isInBand - The in-band consumer flag.

set Local Port (port : int) : void
Set the local port for the end point to communicate through. For example, 12121

Arguments:

e port - The local port for the end point to communicate through. For example,
12121

Handler

The Handler class is responsible for handling exceptional cases during channel input and output
operations.

Public Operations

handl eException(e : Exception) : void
Handle the provided exception that was raised.

Arguments:
e e - The exception that was raised.

InputChannel<T>
An interface for input channels.

Public Operations

cl ose(sessionTrack : SessionTrack) : void

Closes the listening port for this channel. Any connected output channels will be forcibly
closed by the host. Invoking this method more than once should do nothing and not
generate an exception.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
46

e sessionTrack - The identifier(s) for the actor closing the channel.

Raised Exceptions:

e ChannelException

get | nput Channel Context () : | nput Channel Cont ext

Retrieve the input channel context for this channel.
get Nunber Acti veConnections() : int

Retrieve the number of output channels connected to this input channel.
get Nunber Avai | abl eConnections() : int

Retrieve the number of connections left for output channels to connect to. This is
computed by subtracting the number of active connections from the connection limit for
the input channel. If no limit is set this method returns a negative value.

i sQpen() : bool ean

Returns true if this input channel is listening for connections from output channels, false
otherwise.

I'i st Connections() : List<Channel Context>

Retrieve the list of channel contexts that describe the output channels currently
connected to this input channel.

open(sessionTrack : SessionTrack) : void

Open the listening port for this channel and make the channel ready to accept
connections from output channels. Invoking this method more than once should do
nothing and not generate an exception.

Arguments:

e sessionTrack - The identifier(s) for the actor opening the channel.

Raised Exceptions:

e ChannelException
read(reHandl er : | nputHandl er<T>) : void

Read data from this channel asynchronously using the given handler.

Arguments:

e reHandler - The handler responsible for processing the data received from the
channel and any exceptions raised.

InputChannelContext
A channel context specifically for input channels.

Public Operations

addConnecti on(context : Channel Context) : String

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
47

Add a channel context for a connected output channel.

Arguments:

e context - The context for the output channel that has connected to this input
channel.

get ConnectionLimt() : int

Retrieve the maximum number of allowed connections for this input channel. The default
for this is the maximum number of connections allowed by the implementation and its
supporting hardware.

i stConnections() : List<Channel Context>

List the current set of contexts for the output channels that are connected to this input
channel.

removeConnection(id : String) : void

Remove the channel context for the identified output channel that has disconnected from
this input channel.

Arguments:

e id - The identifier for the output channel that has disconnected from this input
channel.
set ConnectionLimt(limt : int) : void

Set the maximum number of allowed connections for this input channel. The default for
this is the maximum number of connections allowed by the implementation and its
supporting hardware. Setting this value to zero is equivalent to reseting it to the default
value.

Arguments:
e limit - The maximum number of allowed connections for this input channel.
InputHandler<T>
This class handles the input received over input channels.

Public Operations

handl eObj ect (object T) : void
Handle the received object of type T.

Arguments:
e object - The object to handle.

OutputChannel<T>

An output Channel is used to output data to a channel. The format of the data is defined by the
specific sub-interfaces of this interface: information, event, and bytes.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
48

Public Operations

connect (sessi onTrack : SessionTrack) : void

Connect this output channel to an input channel. Invoking this method more than once
should do nothing and not generate an exception.

Arguments:

e sessionTrack - The identifier(s) for the actor connecting the channel.

Raised Exceptions:

e ChannelException

di sconnect (sessionTrack : SessionTrack) : void

Disconnect this output channel from its associated input channel. Invoking this method
more than once should do nothing and not generate an exception.

Arguments:

e sessionTrack - The identifier(s) for the actor disconnecting the channel.

Raised Exceptions:

e ChannelException

flushQueue() : void

Flush the current contents of the output queue.
i sConnected() : bool ean

Check if this output channel is connected to an associated input channel. Returns true if
so, False otherwise.

i sQueueEnpty() : bool ean

Check if the current output queue is empty. Returns true if it is empty, False otherewise.
witeAsync(data : T) : void

Write the given data to the output channel in an asynchronous fashion.

Arguments:
e data - The data to be written to the output channel.

ProtocolContext

This context is intended to hold quality of service and other as yet undefined attributes related to
a channel's network application layer protocol and mechanisms.

Public Operations

getProtocol 1d() : String
Retrieve the identifier for the application level protocol for this string.

set Protocol Id(protocolld : String) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
49

Set the identifier for the application level protocol for this string.

Arguments:
e protocolld - The identifier for the application level protocol for this string.

TransportProtocolContext

This context is intended to hold quality of service and other as yet undefined attributes related to
a channel's network transport layer protocol and mechanisms.

Public Operations

get MaxMessageSi ze() : int

Retrieve the max message size supported by this protocol.
i sPersi st Connection() : bool ean

Retrieve the flag telling whether or nor this protocol uses persistent connections.
I i st MessageEncodi ngs() : List<String>

Retrieve the list of encoders to apply to this protocol.
set MaxMessageSi ze(nmaxSi ze : int) : void

Set the max message size supported by this protocol.

Arguments:

e maxSize - The max message size supported by this protocol.
set MessageEncodi ngs(encodings : List<String>) : void
Set the list of encoders to apply to this protocol.

Arguments:

e encodings - The list of encoders to apply to this protocol.
set Per si st Connecti on(persist : boolean) : void

Set the flag telling whether or not this protocol uses persistent connections.

Arguments:
e persist - The flag telling whether or nor this protocol uses persistent connections.
Expression

The expression group provides the interfaces, contexts, and supporting components that define
the Phoenix architecture’s support for describing expressions. The expression interfaces are:

e ExpressionContext
e ExpressionProcessor

e EXxpressionServiceContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
50

ExpressionContext
This Context describes an expression to be used for brokering or query operations.

Public Operations

get Expression() : String

The constraint(s) to be applied over the metadata during the brokering process. This
defines what information is of interest to the consumer requesting the brokering
operation.

get Expressi onType() : String
The type of expression that this Context describes.
set Expression(expression : String) : void

Set the expression instance.

Arguments:

e expression - The expression instance.

set Expressi onType(expressionType : String) : void
Set the type of expression.

Arguments:
e expressionType - The expression type identifier.

ExpressionProcessor
An interface for a generic Phoenix expression processor.

Public Operations

addExpr essi on(expr essi onCont ext : Expr essi onCont ext, i nformati onTypeNanes
List<String>) : String

Register a expression with this expression processor.
This method returns the unique identifier for the registered expression.

Arguments:

e expressionContext - The context defining the expression to be registered.

e informationTypeNames - The list of information types that the given expression
should be applied to.

Raised Exceptions:

e Exception - if an error occurs during the expression registration process.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
51

eval uat e(obj ect ToEval uate : Object) : List<String>

Evaluate an instance of data against the set of registered expressions.
This method returns the List of subscription unique identifiers whose expressions the

provided object matched.

Arguments:

e objectToBroker - The data instance to be evaluated.

Raised Exceptions:

e Exception - if an error occurs during evaluation.

get Support edExpressi onType() : String
Retrieve the supported expression type identifier.
i SRegi stered(expressionld : String) : bool ean

Check if the specified expression has been registered.

Arguments:

e expressionld - The identifier for the expression.

Raised Exceptions:

e Exception - if an error occurs.

|i st Regi steredExpressionlds() : List<String>
Retrieve a listing of the set of identifiers for the currently registered expressions.

Raised Exceptions:

e Exception - if an error occurs.
renoveExpressi on(expressionld : String) : void
Remove a registered expression from the set maintained by this processor.

Arguments:

e expressionld - The unique identifier for the expression to be removed.

Raised Exceptions:

e Exception - if an error occurs during evaluation.
updat eExpressi on(expressionld : String, expressionContext Expr essi onCont ext ,
i nformati onTypeNanes : List<String>) : void
Update a expression without unregistering and re-registering or even pausing and
resuming.

Arguments:

e expressionld - The identifier for the expression to be updated.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
52

e expressionContext - The context containing the new settings for the expression.

e informationTypeNames - The list of information types that the given expression
should be applied to.

Raised Exceptions:
e Exception - if an error occurs.

ExpressionServiceContext
An interface for service context's whose services utilize expression processors.

Public Operations

| i st Support edExpressi onTypes() : List<String>

Retrieve the list of expression types that this service supports.

Frame

The frame group contains the interfaces that define and support custom serialization,
encapsulation, and stream sequencing (and dissemination) capability of the Phoenix architecture.
The frame interfaces are:

e Frame
e FramelnputChannel

e FrameOutputChannel

Frame

The interface used to define frame segments of a stream. A frame is a non-serialized piece of
data which has a custom byte-format. It is generally more difficult to manage than information,
but higher-performance in its dissemination and processing.

Public Operations

get Header () : byte[]

Gets the header portion of the frame.
getData() : byte[]

Gets the data portion of the frame.
get Total Si ze() : int

Gets the total size of the frame include data, header and internals.
getStream d() : String

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
53

Return the string that is used to identify the stream and to query the attributes of the
stream.

setStream d(streamld : String) : void
Set a string that is used to identify the stream and to query the attributes of the stream.

Arguments:

e streamld - The streamld of this frame

get FrameNunber () : long

Returns the frame number in relation to the stream.
set Header (header : String) : void

Sets the header portion of the frame.

Arguments:

e header - The header portion of the frame.

setData(data : byte[]) : void
Sets the data portion of the frame.

Arguments:

e header - The data portion of the frame.

set Data(frameNunmber : long) : void
Sets the frame number in relation to the stream.

Arguments:

e frameNumber - The frame number of this frame in the sequence of the entire
stream.

FramelnputChannel
A frame-specific input channel.

Public Operations

read() : Frane
Read a single frame from the channel.

Raised Exceptions:

e ChannelException
read(nunmber ToRead : int) : List<Frane>

Read a set of frames from the channel. This method will not return until the specified
number of frames have been read.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
54

e numberToRead - The number of frames to read from the channel.

Raised Exceptions:
e ChannelException

FrameOutputChannel
A frame-specific output channel.

Public Operations

wite(frane : Frane) : void
Writes a frame to the Channel.

Arguments:

e frame - The frame to be written to the Channel.

Raised Exceptions:

e ChannelException
wite(frames : List<Frane>) : void
Writes several frames to the Channel.

Arguments:

e frames - The frames to be written to the Channel.

Raised Exceptions:

e ChannelException
Event

The event group provides the interfaces, contexts, and supporting components that define the
components necessary for supporting the concept of event notification. The event interfaces are:

e Event

e EventContext

e EventlnputChannel

e EventOutputChannel

e ExceptionEvent

e InformationDeliveryEvent

e InformationDeliveryType

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
55

e [InformationEvent

e InformationTypeEvent

Event

Events are used for passing messages or other pieces of unmanaged data between actors. These
pieces of data are separate and distinct from information because they are service-level
interactions that are not subject to the same management mechanisms as information instances.

Public Operations

get Body() : bject
Retrieve the body for this Event.
get Event Context () : Event Cont ext

Retrieve the context for this Event.
getEventld() : String

Retrieve the identifier for this Event.
getFiringActorld() : Object

Retrieve the identifier for the actor who generated and fired this event.
set Body(body : Object) : void

Set the body for this Event.

Arguments:
e body - The body for this Event.

EventContext

This context describes additional detail about an event. Like all other contexts, the event context
may be extended through the definition of additional attributes. For example, if the event type is
"subscriber joined", the context may include details such as the specific information type, for
which event notification is requested. Most of the attributes for this Context would depend upon
the definition of the Event object hierarchy, if any, and its branches. In general, this Context
contains only one required attribute, the eventType, whose possible values are dependent upon
implementation decisions.

Public Operations

addMat chi ngRequest | ds(requestlds : List<String>) : void
Add a set of event notification request identifiers to this event.

Arguments:

e requestlds - The set of event notification request identifiers to add to this event.

get Mat chi ngRequestlds() : List<String>

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
56

Retrieve the set of event notification request identifiers for this event, if any exist.

EventinputChannel
An event-specific input channel.

Public Operations

read() : Event
Read a single event from the channel.

Raised Exceptions:

e ChannelException
read(nunmber ToRead : int) : List<Event>

Read a set of events from the channel. This method will not return until the specified
number of events have been read.

Arguments:

¢ numberToRead - The number of events to read from the channel.

Raised Exceptions:
e ChannelException

EventOutputChannel
An event-specific output channel.

Public Operations

wite(event : Event) : void
Write the specified Event to the channel.

Arguments:

e event - The Event to be written to the channel.

Raised Exceptions:

e ChannelException
wite(events : List<Event>) : void
Write the specified Events to the channel.

Arguments:

e events - The Events to be written to the channel.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
57

e ChannelException

ExceptionEvent
This Event is used to report Exceptions asynchronously.
Public Operations
get Exception() : Exception
Retrieve the Exception that is contained within this Event.
InformationDeliveryEvent

This specific sub-interface of Event provides a helper interface for handling delivery receipt
Events.

Public Operations

getDel i veryType() : InformationDeliveryType
Retrieve the identifier for the type of delivery that this Event is describing.
getOriginati ngActors() : List<String>
Retrieve the list of identifiers for the actors whom this delivery receipt Event applied to.
InformationDeliveryType

An enumeration defining the types of information delivery supported by the Phoenix Architecture.

Public Fields

CONSUMER_RECEI PT
A delivery type that identifies that a consumer has received the information.
SUBM SSI ON_RECEI PT

A delivery type that identifies that a Submission Service has received the information.

InformationEvent
An interface for events pertaining to Information.

Public Operations

getlInformationld() : String

Retrieve the identifier for the information instance that this Event is associated with.

InformationTypeEvent

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
58

An Event that refers to a specific Information Type. For example, this could be an event alerting
an actor that another actor has subscribed to a specific information type.

Public Operations

get I nformati onType() : Informati onTypeCont ext

Retrieve the context describing the information type associated with this event.

Service Interfaces

Service interfaces define the functionality for each service as well as any specific supporting
interfaces required by each individual service. The service interfaces have been sub-divided into
the following functional groups:

Information Service Interfaces

Information services directly manipulate information or information type definitions.

e Dissemination

e Information Brokering

e Information Type Management
e Query

e Repository

e Submission
Dissemination

The dissemination group contains the interfaces that define and support the information
dissemination capability of the Phoenix architecture. The dissemination interfaces are:

e DisseminationService
e DisseminationServiceConnector
e DisseminationServiceContext

e DisseminationServiceStub

DisseminationService

The Dissemination Service extends the Base Channel Service and is responsible for accepting
information and delivering it to consumers. Information forwarded to the Dissemination Service

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
59

from an actor is expected to contain a list of channel definitions as part of the resident
information context. These definitions come in the form of fully defined channel contexts. The
Dissemination Service may, if nceessary, create channels based on these definitions and use
them to deliver information to consumers.

Public Operations

get Channel Cont ext s(sessionTrack : SessionTrack, channel Nanes : List<String>)
Li st <Channel Cont ext >

Retrieve the contexts describing the channels with the given names.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e channelNames - The names of the channels to retrieve the channel contexts for.

Raised Exceptions:

e Exception

i sManaged(sessi onTrack : SessionTrack, channel Name : String) : bool ean
Check if the identified channel is being managed by this service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e channelName - The identifier for the channel.

Raised Exceptions:

e Exception
I i st Channel Nanmes(sessi onTrack : SessionTrack) : List<String>

Retrieve the set of names of the channels being managed by this Dissemination Service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception
Typical Use

This service is typically used in concert with single or multiple Information Brokering or
Repository Services. These services perform brokering and query execution operations and
forward information to be disseminated to the DS. This service may also be used in concert with
other IM services, or as a standalone information dissemination capability, providing that the
utilizing actors conform to the operational semantics of the DS.

Associated Diagrams

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
60

Use Cases

e UC 0000 Phoenix IM Capabilities
Activity Diagrams

e AD 0008 Information Dissemination
Class Diagrams

e CD 0000 Phoenix IM Services

e CD 0006 Information Dissemination

Sequence Diagrams

e SQD 0005 Brokering (Information - via Information Channel (In-Band Delivery))

DisseminationServiceConnector

This interface extends the Dissemination Service interface, thereby exposing all of its methods
on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Dissemination Service)

DisseminationServiceContext
This context holds the settings specific to the Dissemination Service and its operations.

Public Operations

get MaxSupportedConsuners() : |ong

Retrieve the theoretical maximum number of concurrent consumers that the associated
parent service can support.

set MaxSupport edConsuners(max : long) : void
Set the maximum number of concurrently supported consumers for this service.

Arguments:

e max - The maximum number of concurrently supported consumers for this
service.

DisseminationServiceStub

This interface extends the Dissemination Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
61

(Inherited from the Dissemination Service)

Information Brokering

The information brokering group contains the interfaces that define and support the information
brokering capability of the Phoenix architecture. The information brokering interfaces are:

e ConsumerList

e InformationBrokeringService

¢ InformationBrokeringServiceConnector
e InformationBrokeringServiceContext

e InformationBrokeringServiceStub

ConsumerList

Contains the list of in-band and out-of-band consumers for a subscription. In-band consumers
are defined as those connected directly to one or more Phoenix services using channels. These
consumers receive information directly from Phoenix services through the channels. Out-of-band
consumers are those that are not connected directly to any Phoenix services through channels. If
they receive information being managed by the Phoenix services they are receiving it through
some mechanism other than a Phoenix channel.

Public Operations

addl nBandConsuner s(consuners : List<String>) : void
Adds a list of in-band consumers to the in-band list.

Arguments:

e consumers - The list of consumer identifiers to add to this ConsumerList.
addQut Of BandConsuner s(consunmers : List<URI >) : void
Add a set of out-of-band consumers to be added to the out-of-band list.

Arguments:

e consumers - The set of out-of-band consumer URI's to add to the out-of-band list.

get I nBandConsuners() : List<String>

Retrieve the listing of in-band consumers. Returns a list of subscription ID’s.
get Qut Of BandConsuners() : List<URI>

This method retrieves the listing of URI's for the out-of-band consumers.

InformationBrokeringService

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
62

This service extends the Base Channel Service and the Subscription Service interfaces and
provides the information brokering capability of the Phoenix services. Information brokering is
the act of matching submitted information with registered expressions. An information brokering
service must support both the ability to forward brokered information for delivery and the ability
to report the list of matching expressions for a piece of information without delivery.

The architecture defines the information brokering service in such a way that it supports three
distinct brokering use cases:

1. Brokering on-demand via a control method. This method accepts a single instance of
information, brokers it, and returns the consumer hit list of expression identifiers and/or
consumer URIs that the information satisfied.

2. Implicit brokering that results in a stream of hit list results being delivered to interested
entities via event notification.

3. Implicit brokering that results in a stream of information that is forwarded to some
dissemination service for delivery to matching consumers.

Implicit brokering refers to the act of the brokering information received over information
channels. The brokering service interface does not limit the operations that may be performed
upon submitted information during the brokering process.

Brokering of information is done through the use of an expression processor implementation. The
processor is part of the configuration defined in the Information Brokering Service's context.

Public Operations

dropSubscri ptions(sessionTrack : SessionTrack, subscriptionlds : List<String>)
voi d
This method is used to drop subscriptions. This will remove the internal context for each
identified expression. No return value for this method.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e subscriptionlds - The identifiers of the registered subscriptions to be dropped.

Raised Exceptions:

e Exception

get Subscri pti onCont ext s(sessi onTrack : Sessi onTr ack, subscri ptionl ds
List<String>) : List<SubscriptionContext>

This method provides a way to access the context objects describing registered
subscriptions. It returns the set of SubscriptionContexts that describe the registered
subscriptions. These contexts contain the expression criteria as well as any other custom
attributes that the registrant utilized to describe what information they are interested in
receiving.

Arguments:
e sessionTrack - The pedigree of the invokers for this method.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
63

e subscriptionlds - The identifiers of the registered subscriptions whose descriptions
are going to be retrieved.

Raised Exceptions:

e Exception

get Consumer s(sessi onTrack : Sessi onTr ack, i nformati on : | nf or mati on,
consuner Scope : Consumer Report) : ConsumerLi st

This method is used to immediately receive the results of a brokering operation over the
supplied information. It returns a ConsumerList object that contains the URI information
and identifiers for the consumers whose registered expression matches the supplied
information.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e information - The information that is to be brokered against the registered
expressions.

e consumerScope - The flag that identifies the types of consumers that the invoker
is interested in. These are identified by the ConsumerReport enumeration.

Raised Exceptions:

e Exception

| i st Regi st eredSubscri ptionlds(sessionTrack : SessionTrack) : List<String>
List the identifiers for the set of currently registered subscriptions.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception

regi ster Subscri pti ons(sessi onTrack : Sessi onTr ack, subscri pti onCont ext s
Li st <Subscri ptionContext>) : List<String>

This method is used to register subscriptions. It returns the identifiers for the registered
subscriptions.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e subscriptionContexts - The Context objects describing the subscriptions to be
registered.

Raised Exceptions:

e Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
64

resuneSubscri ptions(sessionTrack : SessionTrack, subscriptionlds : List<String>)
voi d

Resume brokering operations over the identified subscriptions.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e subscriptionlds - The identifiers of the registered subscriptions to be resumed.

Raised Exceptions:

e Exception

suspendSubscri pti ons(sessi onTrack : Sessi onTr ack, subscri ptionl ds
List<String>) : void

Temporarily suspend brokering operations over the identified subscriptions.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e subscriptionlds - The identifiers of the registered subscriptions to be suspended.

Raised Exceptions:

e Exception

updat eSubscri pti on(sessi onTrack : Sessi onTr ack, subscri ptionld : String,
subscription : SubscriptionContext) : void

Update the identified expression.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e subscriptionld - The identifier for the subscription to be updated.

e subscription - The context containing the new settings for the subscription. It is
up to each implementation to decide if this context is to contain all new values,
with empty values assumed to be removed, or empty values assumed to be
untouched.

Raised Exceptions:
e Exception
Typical Use

This service is typically used in concert with single or multiple Submission and Dissemination
Services to provide a complete publish and subscribe system.

Associated Diagrams

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
65

Use Cases
e UC 0000 Phoenix IM Capabilities
Activity Diagrams

e AD 0005 Brokering (Information - via Control Interface)

e AD 0006 Brokering (Information - via Channels

Class Diagrams

e CD 0000 Phoenix IM Services
e CD 0003 Brokering (Information - via Control Interface)

e CD 0004 Brokering (Information - via Channel)

Sequence Diagrams

e SQD 0003 Brokering (Information - via Control Interface)

e SQD 0004 Brokering (Information - Expression Registration (In-Band Consumer))

e SQD 0005 Brokering (Information - via Information Channel (In-Band Delivery))

e SQD 0006 Brokering (Information - Expression Registration (Out-of-Band Producer))

e SQD 0007 Brokering (Information - via Information Channel (Out-of-Band Delivery))

InformationBrokeringServiceConnector

This interface extends the Information Brokering Service and Subscription Service interfaces,
thereby exposing all of their methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Information Brokering Service and the Subscription Service)

InformationBrokeringServiceContext
This context contains any Information Brokering Service specific attributes.
Public Operations

None.

InformationBrokeringServiceStub

This interface extends the Information Brokering Service and the Subscription Service, thereby
inheriting and exposing all of their methods on the stub side of the Phoenix control channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
66

Public Operations

(Inherited from the Information Brokering Service and Subscription Service)

Information Type

The information type management group contains the interfaces that define the service that
creates, manages, and destroys information type definitions. The Information type management
interfaces are:

e InformationTypeContext

¢ InformationTypeManagementService

e InformationTypeManagementServiceConnector
e InformationTypeManagementServiceStub

e Schema

e ValidationFailedException

InformationTypeContext

This Context describes the attributes necessary to define an information type within the
architecture. It is used by the Information Type Management Service to create, delete, and
archive information types.

This Context has three required attributes: typeName, metadataSchema, and payloadSchema.

1. The typeName is the identifier for the information type as it will be known to the IM
Services. This is used by all actors to identify information of this kind.

2. The metadataSchema is the definition of the structure of the metadata used to describe
the payload. For example, if the metadata for a type of information is to be described by
Extensible Markup Language (XML) documents, the metadataSchema for that type would
be an XML schema document (XSD) stored within a Schema object.

3. The payloadSchema is the definition of the structure of the payload. For example, if the
payload for a type of information is to be described by Extensible Markup Language
(XML) documents, the payloadSchema for that type would be an XML schema document
(XSD) stored within a Schema object.

Public Operations

getlnformati onTypeNane() : String

Retrieve the unique identifier for this registered information type.
get Met adat aSchema() : Schenma

Retrieve the object defining the structure of the metadata for this information type.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
67

get Payl oadSchema() : Schema

Retrieve the object defining the structure of the payload for this information type.
set | nformati onTypeNane(typeNane : String) : void

Set the information type identifier.

Arguments:

e typeName - The information type identifier.
set Met adat aSchema(schema : Schemmn) : void
Set the metadata schema.

Arguments:

e schema - The metadata schema object.

set Payl oadSchema(schenma : Scherma) : void
Set the payload schema.

Arguments:
e schema - The payload schema object.

InformationTypeManagementService

The interface for information type management service will provide methods for registering,
retrieving, and deleting information type definitions. This service interface extends the Base
Channel Service interface.

Public Operations
archi veTypeDefini ti ons(sessi onTrack : Sessi onTr ack, typeCt xs

Li st<I nformati onTypeContext>) : void

This method archives the definition of a specified information type. This is for the case
where information of a certain type is moved to the offline archive, but we still need the
description of said type so that we can query the offline archive and make sense of the
information being returned.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e typeCtxs - The Information Type Contexts describing what information types are
to be archived.

Raised Exceptions:

e Exception

createl nformati onTypes(sessi onTrack : Sessi onTr ack, typeCt xs
Li st<I nformati onTypeContext>) : void

Creates a new information type for a specified format of metadata and payload.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
68

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e typeCtxs - The Information Type Contexts containing the definitions of the new
information types.

Raised Exceptions:

e Exception

del et eTypeDefi ni ti ons(sessi onTr ack : Sessi onTr ack, typeCt xs
Li st<I nformati onTypeContext>) : void

Delete the specified information type definition and all records of this type from the data
store.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e typeCtxs - The Information Type Contexts describing what information types are
to be deleted from the registry.

Raised Exceptions:

e Exception

get TypeDefinition(sessionTrack : SessionTrack, ctx : InformationTypeContext)
I nf or mat i onTypeCont ext

Get the type definition for the specified information type.
Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e ctx - The Information Type Context that contains the parameters used to locate
the information type definition of interest. These may include the type name
identifier, possible hierarchical constraints, or others.

Raised Exceptions:

e Exception

Iistlnformati onTypeldentifiers(sessionTrack : SessionTrack) : List<String>
Returns a list of IDs for all of the registered information types.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
69

updat eTypeDefi ni ti on(sessi onTrack : Sessi onTr ack, typeCt x
I nformati onTypeContext) : void

Updates an information type's associated context. The Phoenix Design Team suggests
that this method have policy applied such that the information type name, metadata
schema, and payload schema variables not be allowed to be modified.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e typeCtx - An InformationTypeContext containing the attributes (and their
associated values) to be updated.

Raised Exceptions:
e Exception
Typical Use

This service is for defining and managing information types. It may or may not utilize some kind
of repository to store these definitions. Reading and writing from and to this repository are
internal processes of this service and not exposed to external actors by the service interface,
except in abstract forms (i.e. via methods such as "getTypeDefinition()" and
"createlnformationTypes()" respectively).

Associated Diagrams
Use Cases

e UC 0000 Phoenix IM Capabilities

e UC 0007 Information Type Management
Activity Diagrams

e AD 0011 Information Type Management
Class Diagrams

e CD 0000 Phoenix IM Services

e CD 0009 Information Type Management

Sequence Diagrams
e (none)
InformationTypeManagementServiceConnector

This interface extends the Information Type Management Service interface, thereby exposing all
of its methods on the connector side of the Phoenix control channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
70

(Inherited from the Information Type Management Service)

InformationTypeManagementServiceStub

This interface extends the Information Type Management Service, thereby inheriting and
exposing all of its methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Information Type Management Service)

Schema

This class represents a usable version of a schema that defines either a metadata or a payload
format for an information type.

Public Operations

get Defi ni ti onDocunent () : Object

Retrieve the definition document as an object.
set Definiti onDocurment (schemaDoc : Object) : void

Set the definition document using a generic Object representation.

Arguments:

e schemabDoc - The definition document as a generic Object.

Raised Exceptions:

e Exception
val i date(data : Object) : bool ean
Validate an instance of data against the definition document.

Arguments:

e data - The data to be validated.

Raised Exceptions:
e ValidationFailedException

ValidationFailedException

An exception that provides a mechanism to track exactly what data failed the associated
validation attempt.

Attributes

inval i dOoj ect : Object

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
71

The data that failed the validation attempt stored as a generic Object.

Public Operations

getlnval i dObject() : hject

Retrieve the invalid object.

Query

The query group contains the interfaces that provide the information retrieval capability of the
Phoenix IM Services. The query interfaces are:

e DataStoreType

¢ InformationQueryContext
e QueryService

e QueryServiceConnector

e QueryServiceContext

e QueryServiceStub

DataStoreType

This enumeration lists the possible types of data stores that can be connected to a Phoenix
Repository Service or Query Service.

Public Fields

ARCHI VE

Identifies a data store as a relatively higher-latency, higher-capacity data store. These
data stores are synonymous with traditional database archives. These archives are
typically not as readily available as LIVE data stores.

LI VE

Identifies a data store as a relatively lower-latency, lower-capacity data store. These data
stores, called repositories by the Phoenix architecture, are typically more readily available
than ARCHIVE data stores.

InformationQueryContext
A context used specifically for describe queries for information.
Public Operations

addConsuner Channel (consuner : Channel Context) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
72

Add a consumer channel to receive the results of this query.

Arguments:

e consumer - The context describing the consumer channel to receive the results of
this query.

addExpr essi on(expression : ExpressionContext) : void
Add an expression to this query.

Arguments:

e expression - The expression to be added to this query.

addl nformati onTypeNane(typeNane : String) : void
Add an information type name for this query to be applied to.

Arguments:

e infoTypeName - The information type name that this query will be applied to.

get Al | Resul t sRet urnedTinme() : |ong
Retrieve the amount of time the inquisitor is willing to wait for its query to return all of its
result set.

get Execut i onModeFl ag() : int

Retrieve the flag describing the query execution mode. Currently this is envisioned as:
Synchronous (0) or Asynchronous (1).

get First Resul t ReturnedTine() : |ong

Retrieve the amount of time the consumer is willing to listen for the first result that
matches the associated expression.

| i st Consuner Channel s() : List<Channel Cont ext >

Retrieve the entire list of consumer channels bound to this query.
| i st Expressions() : List<ExpressionContext>

Retrieve the list of expressions for this query.
l'istlnformationTypeNames() : List<String>

Retrieve the information type names that this query applies to.
set Al |l Resul t sReturnedTinme(arrt : long) : void

Set the amount of time the inquisitor is willing to wait for its query to return all of its
result set.

Arguments:

e arrt - The amount of time the inquisitor is willing to wait for its query to return all
of its result set.

set Execut i onModeFl ag(nodeFlag : int) : void

Set the flag describing the query execution mode. Currently this is envisioned as:
Synchronous (0) or Asynchronous (1).

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
73

e modeFlag - The flag describing the query execution mode. Currently this is
envisioned as: Synchronous (0) or Asynchronous (1).

set Fi rst Resul t ReturnedTi me(frrt : long) : void

Set the amount of time the consumer is willing to listen for the first result that matches
the associated expression.

Arguments:

e frrt - The amount of time the consumer is willing to listen for the first result that
matches the associated expression.

QueryService

This service extends the Base Channel Service interface and provides an information retrieval
capability. This service permits actors to retrieve records from the underlying data store. Using a
Query Context construct to describe the actual query to be executed allows the architecture to
mandate a small set of required query attributes while leaving the door wide open for individual
implementations of the IM Services to include additional attributes to tune the query processing
of each query service more towards their respective underlying data stores. The query service
will support synchronous and asynchronous query execution. For synchronous queries the
execute query method provided will return a value representing the number of matching records
found. This same method will return nothing when used asynchronously. In all cases the result
set of the query will be returned to the consumer via information channels.

Public Operations

cancel Query(sessionTrack : SessionTrack, queryld : String) : bool ean

Cancel a currently executing query. Executing queries are defined as queries that have
any processor cycles associated with them, i.e. a query is not done executing until all
results (if any) are delivered to the Dissemination Service for delivery.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e queryld - The unique identifier for the query to be canceled.

Raised Exceptions:

e Exception
execut eQuery(sessionTrack : SessionTrack, queryCtx : QueryContext) : int

This method processes the specified query to satisfy some inquisitor's request for
information. Actual result sets are delivered via one or more information channels set up
between the consumer and the query service. When this method is invoked
synchronously, the return value signals the inquisitor the estimated number of matching
records that were found or that an error occurred while processing their query. A value of
zero or greater is the estimated number of matching records while values less than zero
are reserved for possible error flags. The returned value is an estimation because, when a
query is executed against a live database more records that match the query could be

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
74

inserted while the query is executing or while the results are being returned to the
inquisitor. When used asynchronously, this method does not return a value.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e queryCtx - The Query Context object that describes what information the
inquisitor is searchig for.

Raised Exceptions:

e Exception

get Count s(sessi onTr ack : Sessi onTr ack, i nf oTypeNanes : Li st<String>)
Map<String, |nteger>

Retrieves the number of records in the repository for the specified types. This method
returns a Map of key-value pairs that define how many records there are for each
specified type.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e infoTypeNames - The listing of information type identifiers to retrieve the count(s)
for.

Raised Exceptions:

e Exception
IistActiveQuerylds(sessionTrack : SessionTrack) : List<String>

List the unique identifiers for the currently executing queries. Executing queries are
defined as queries that have any processors cycles associated with them, i.e. a query is
not done executing until all results (if any) are delivered to the Dissemination Service for
delivery.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:
e Exception

Typical Use

This service is coordinated with one or more other Query Services to provide read access into
data stores supported by Repository Services. Since the Repository Service extends this service
interface that means a Query Service may end up talking directly to a Repository Service.

Associated Diagrams
Use Cases

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
75

e UC 0000 Phoenix IM Capabilities

e UC 0009 Information Retrieval (Query)
Activity Diagrams
e AD 0013 Information Retrieval (Query)

Class Diagrams

e CD 0000 Phoenix IM Services

e CD 0011 Information Retrieval (Query)

Sequence Diagrams

e SQD 0009 Information Retrieval (Query — Synchronous)

e SQD 0010 Information Retrieval (Query — Asynchronous)

QueryServiceConnector

This interface extends the Query Service interface, thereby exposing all of its methods on the
connector side of the Phoenix control channel.

Public Operations

(Inherited from the Query Service)

QueryServiceContext

This context describes the attributes specific to the Query Service which includes any default
query settings such as timeouts and time to live, the set of query languages supported by the
associated Query Service, and the type of data store the associated Query Service is an interface
to (i.e. "Is the underlying data store a repository or an archive?"). The Query Service Context
has five attributes defined for it by the Phoenix architecture: dataStoreType,
defaultMaxresultSetSize, defaultTurnAroundTime, and defaultTimeToLive.

1. The dataStoreType is the kind of data store that the underlying data store represents.
The possible values for this flag are defined by the Data Store Type enumeration.

2. The defaultMaxresultSetSize is the default setting for the maximum number of results to
be returned by any single query against the underlying data store.

3. The defaultTurnAroundTime is the default amount of time that a query has to execute,
build its result set, and deliver all results to the consumer(s).

4. The defaultTimeToLive is the default amount of time that a query has to execute and
build its result set. This is a separate constraint on queries because these operations are
typically the most intensive and can cause the most problems at runtime.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
76

get Dat aSt oreType() : DataStoreType

Retrieve the value describing the type of data store that the associated parent Query
Service is connected to. The range of possible return values are defined in the
DataStoreType enumeration.

get Def aul t Al | Resul t sRet urnedTi me() : |ong

Retrieve the default amount of time the Query Service is willing to let an inquisitor wait
for their query to return all of its result set.

get Def aul t Fi r st Resul t Ret urnedTinme() : |ong

Retrieve the amount of time the Query Service is willing to let the consumer wait for the
first result that matches their associated query.

get Def aul t MaxResul t Set Si ze() : |ong

Retrieve the default value for the maximum number of results that the IM Services are
willing, or allowed, to return to each individual inquisitor for each individual query.

set Dat aSt or eType(type : DataStoreType) : void
Set the type of data store that the associated query service is connected to.

Arguments:

e type - The type of data store that the associated query service is connected to.
Possible values are defined by the DataStoreType enumeration.

set Defaul t Al | Resul t sReturnedTi me(arrt : long) : void

Set the default amount of time the Query Service is willing to let an inquisitor wait for
their query to return all of its result set.

Arguments:

e arrt - The default amount of time the Query Service is willing to let an inquisitor
wait for their query to return all of its result set.

set Defaul t Fi rst Resul t ReturnedTine(frrt : long) : void

Set the amount of time the Query Service is willing to let the consumer wait for the first
result that matches their associated query.

Arguments:

e frrt - The amount of time the Query Service is willing to let the consumer wait for
the first result that matches their associated query.

set Def aul t MaxResul t Set Si ze(nmexSi ze : long) : void
Set the default maximum result set size.

Arguments:
e maxSize - The default maximum result set size.

QueryServiceStub

This interface extends the Query Service, thereby inheriting and exposing all of its methods on
the stub side of the Phoenix control channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
77

Public Operations

(Inherited from the Query Service)

Repository

The repository group contains the interfaces that define the Phoenix IM Services capability to
store information within a repository or archive for later retrieval. The repository interfaces are:

e RepositoryService

e RepositoryServiceConnector
e RepositoryServiceContext

e RepositoryServiceStub

e TableType

RepositoryService

The Repository Service extends the Query Service and provides the ability to manage
information in its associated data store(s). There is no actual insert information method defined
as part of the service API. Instead, the Repository Service receives information via channels
making insertion an internal process. This decision was made to ensure the physical separation
of control versus data interactions. The information storage interface is an extension of the
information retrieval interface. This follows the assumption that if you can write to a section of
disk then you are implicitly able to read from that section as well, i.e. if you can write to the data
store, you should be implicitly able to read from the data store as well. This service also provides
the ability to delete records from the database.

The Phoenix architecture defines two types of data stores: repositories and archives. Repositories
are low-latency high-access data stores that should support higher data read and write rates.
Archives are expected to be higher latency, low access data stores that may not be able to
support high data rates but can store much more data than repositories. A possible
implementation strategy would be to store recent information in a repository while aging data
would be moved to an archive.

Public Operations

archi veRecords(sessionTrack : SessionTrack, query : QueryContext) : int

Archive records that match the provided query. If consumer channels are specified then
write all records to be archived to the channels (remote archive), if no consumer
channels are specified archive to disk in a repository implementation agnostic way (local
archive). There are several possibilities that arise from using a QueryContext for this
operation:

1. If an expression and information types are both specified the expression is applied
to only the specified types and the matching records are archived.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
78

2. If an expression is specified but information types are not the expression is
applied to all supported types and the matching records are archived.

3. If no expression is provided but a set of information types are specified all records
of the specified types are archived.

4. If neither an expression nor a set of information types are specified nothing
happens and an exception is thrown. This is done because we specifically want to
lock out the possibility of the default case being to archive all records for all
supported types.

Returns the total number of records archived.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e query - The context that defines the subset of records to be archived.

Raised Exceptions:

e Exception

del et eRecords(sessionTrack : SessionTrack, query : QueryContext) : int

Delete records that match the provided query. Any consumer channels defined for the
provided query are ignored. There are several possibilities that arise from using a
QueryContext for this operation:

1. If an expression and information types are both specified the expression is applied
to only the specified types and the matching records are deleted.

2. If an expression is specified but information types are not the expression is
applied to all supported types and the matching records are deleted.

3. If no expression is provided but a set of information types are specified all records
of the specified types are deleted.

4. If neither an expression nor a set of information types are specified nothing
happens and an exception is thrown. This is done because we specifically want to
lock out the possibility of the default case being to delete all records for all
supported types.

Returns the total number of records deleted.

Arguments:
e sessionTrack - The pedigree of the invokers for this method.

e query - The context that defines the subset of records to be deleted.

Raised Exceptions:

e Exception

renovel nformati onSt ore(sessionTrack : SessionTrack, infoTypeNane : String)
voi d

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
79

This method will tell the service to permanently remove the data store for the identified
information type. This method should fail if the repository is currently storing data for the
specified information type (i.e. “end” method must be called first, before a “remove” call
is executed).

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e infoTypeName - The name of the information type to remove the resident data
store for.

Raised Exceptions:

e Exception

start Storingl nformati on(sessi onTrack : Sessi onTr ack, t ypeCont ext
I nformati onTypeContext) : void

This method causes the service to begin storing information of the identified type. If the
type does not have a location (XML container, database table, etc) to store the
information in, one will be created. If a location already exists, that existing location will
be appended to. If the desired functionality is to create a new store for an already
registered type, an actor should call the archive method, which will move the existing
data store contents to another location.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e typeContext - The context that describes the information type to start information
for. This context may be a partial or complete copy of the type definition.
Complete copies are required if the repository service has never stored
information of the identified type.

Raised Exceptions:

e Exception

stopStoringl nformati on(sessionTrack : SessionTrack, infoTypeNanme : String)

voi d

This method will tell the service to stop storing information of the identified type. Any
further information instances of this type that are received will be ignored (dropped out
of memory at processing time).

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e infoTypeName - The name of the information type to stop storing information
instances for.

Raised Exceptions:
e Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
80

Typical Use

This service is typically paired with the Phoenix Submission Service. It inherits the ability to read
stored information from the underlying data store from the Phoenix Query Service interface. This
service may be implemented in such a way that it can be used as a wrapper for existing legacy
data stores.

Associated Diagrams
Use Cases

e UC 0000 Phoenix IM Capabilities

e UC 0005 Information Storage (Persistence)
Activity Diagrams

e AD 0009 Information Storage (Persistence)
Class Diagrams

e CD 0000 Phoenix IM Services

e CD 0007 Information Storage (Persistence)

Sequence Diagrams

e SQD 0008 Information Storage (Persistence)

RepositoryServiceConnector

This interface extends the Repository Service interface (and by extension the Query Service
interface), thereby exposing all of its methods on the connector side of the Phoenix control
channel.

Public Operations

(Inherited from the Query Service and the Repository Service)

RepositoryServiceContext

This is the context used to describe the attributes specific to the Repository Service. This context
inherits all attributes defined by the Query Service Context, just like the Repository Service
interface inherits the methods found in the Query Service interface. The Repository Service
Context contains at least three attributes: maxSize, spaceRemaining, and defaultTableType.

1. The maxSize is the maximum size of the complete data store including all tables for all
supported Information types. The unit of measure for this variable is left up to the
implementations of the abstract architecture.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
81

2. The spaceRemaining is the amount of space remaining for the complete data store.
Again, the unit of measure for this variable is left up to the implementations of the
abstract architecture.

3. The defaultTableType defines the default type of table for registered Information types.
The possible values for this flag are defined by the Table Type enumeration.

Operations

get MaxRepositorySi ze() : long

Retrieve the theoretical maximum size for the data store that the associated parent
Repository Service is connected to. The actual unit of measure is left to the
implementation designers to determine.

get SpaceRemai ning() : |ong

Retrieve the actual space remaining on the hard drive(s) that the underlying data store is
being hosted on.

get Def aul t Tabl eType() : Tabl eType

Retrieve the flag defining the default type of persistence to perform when inserting
information into the underlying data store. Possible values are defined in the TableType
enumeration.

RepositoryServiceStub

This interface extends the Repository Service (and by extension the Query Service), thereby
inheriting and exposing all of its methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Repository Service and Query Service)

TableType

This enumeration lists the possible types of tables that can exist within a data store that is
connected to a Phoenix Repository Service or Query Service.

Public Fields

FI XED_SI ZE

This denotes a data store that stops storing data when the corresponding table reaches a
fixed size limit. This limit can be represented as physical disk space, number of records,
or something else defined by the implementation designers.

I NFI NI TE
The data store keeps on storing data until it suffers a hard or soft failure.
ROLLI NG

The data store keeps inserting data until a set size is reached. Once the limit has been hit
some existing data is removed to make room for the new data to be stored. The data

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
82

removed is determined according to whatever logic or policy that the implementation
designers enact.

Submission

The submission group contains the interfaces that provide the information submission capability
for the Phoenix IM Services. The submission interfaces are:

e SubmissionService
e SubmissionServiceConnector
e SubmissionServiceContext

e SubmissionServiceStub

SubmissionService

The Submission Service extends the Base Channel Service and accepts data from producers,
converts it into managed information, and forwards it to other IM services as required. This
process uses channels internal to the Submission Service and, because of this, there is no
‘submit’ method defined in the service’s control interface.

This service receives information via channels and may involve converting accepted data into the
Phoenix architecture’s supported format for managed information. The submission service
supports the notion of acknowledging acceptance or rejection of submitted data using delivery
receipt Events sent over Event Channels. The architecture defines an information “submission”
service versus information “publication” service because this service does not guarantee the
publication of submitted data (i.e. security and QoS policy constraints). The submission service
must provide mechanisms to forward submitted information to information brokering services
and repository services, but the architecture makes no guarantees that this is done for any
specific piece of submitted data. An implementation of the Submission Service may also provide
mechanisms for forwarding submitted information to other IM services as well depending upon
the requirements of the implementation.

Public Operations

(none)

Typical Use

The Submission Service is the typical entry point for information to be disseminated. As such,
the SS is used in conjunction with any number of other Phoenix information services including
the Information Type Management, Information Brokering, Dissemination, and Repository
Services. The SS may also be coordinated with one or more Session Management and
Authorization Services to support session monitoring and authorization operations.

Associated Diagrams
Use Cases

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
83

e UC 0000 Phoenix IM Capabilities

e UC 0001 Information Submission
Activity Diagrams
e AD 0001 Information Submission

Class Diagrams

e CD 0000 Phoenix IM Services

e CD 0001 Information Submission

Sequence Diagrams

e SQD 0001 Information Submission

e SQD 0002 Information Submission (Submission ACK via ENS)

SubmissionServiceConnector

This interface extends the Submission Service interface, thereby exposing all of its methods on
the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Submission Service)

SubmissionServiceContext

The Submission Service Context any values or entities of specific interest or importance to the
Submission Service.

Public Operations

None.

SubmissionServiceStub

This interface extends the Submission Service, thereby inheriting and exposing all of its methods
on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Submission Service)

Utility Service Interfaces

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
84

Utility services provide capabilities that do not directly manipulate information instances, such as
session management or service brokering. They form both the backbone infrastructure of the
Phoenix architecture and provide additional service capabilities that exetnd the usefullness of the
IM system as a whole.

e Client

e Event Notification

e Filter

e Information Discovery
e Security

e Service Brokering

e Session Management

e Subscription

Client

The client group contains the interfaces that define a service designed to live within a client’s
address space. The client interfaces are:

e ClientRuntimeService
e ClientRuntimeServiceConnector
e ClientRuntimeServiceContext

e ClientRuntimeServiceStub

ClientRuntimeService

The Client Runtime Service extends the Base Channel Service and ensures that there is a service
oriented presence on the client-side to support event notification and connectors for reach-back
from services to the client. This allows core IM Services the ability to influence external actors'
address space providing a possible location for client -side policy enforcement and updating,
event notification, or other service-to-external actor interactions. This ability becomes doubly
important when operating on a disadvantaged network where actor communications may phase
in and out over time due to networking degradation or other operational conditions. In this
environment the client runtime service may provide a network buffer at the application level by
queuing outgoing data until it can be transmitted or it may provide proxy IM capabilities for the
client while it is disconnected from the network.

Public Operations
createPublisherChannel

creat ePubl i sher Channel (handl er : Handler) : String

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
85

publ i

publ |

publ i

This method creates a new connection to the Submission Service. By allowing an actor to
specify the callback object for the channel to use, the actor is able to be made aware of
communication failures. This method returns the identifier for the created channel.

Arguments:

e handler - The exception handler for this channel.

Raised Exceptions:

e Exception
sh(information : Information, waitTinelnMs : long) : void

This method is for blocking publications. If delivery receipts are requested this method
will block until all receipts are returned. If the wait time is expended without return of the
expected delivery receipts an exception is thrown.

Arguments:

e information - The information instance to be published.

e waitTimelnMs - The total time to publish the information instance and to wait for
all delivery receipts, in milliseconds.

Raised Exceptions:

e Exception
shAsync(i nformation : Information) : void

This is a non-blocking publish method that is used in a fire-and-forget manner. The
invoker does not care about neither the return value from the operation nor any raised
exceptions. Fire and forget assumes that delivery receipts will be ignored if the
corresponding flags were set at publication time.

Arguments:

e information - The information instance to be published.

Raised Exceptions:

e Exception
shAsync(i nformation : Information, handler : Handler< ? >) : void

A non-blocking publish method that provides a handler interface to handle exceptions.

Arguments:

e information - The information instance to be published.

e handler - The handler to process any return value or raised exception. This
handler is expected to handle any event notification operations associated with
delivery receipts.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
86

e Exception

subscri be(expressions : String[], expressi onTypes : String[],
i nformati onTypeNanmes : List<String>) : void

This subscribe method is used to setup a subscription for information, but not the
consumption of matching information. For example, it may be used to setup a
subscription on the behalf of another actor. This method will generate consumer delivery
receipt events as required, depending on service configuration.

Arguments:

e expressions - The expressions to match information instances against.

e expressionTypes - The types of expressions. The entries in this array are expected
to map to entries in the expressions array on a 1-to-1 basis.

e informationTypeNames - The list of information type names that this subscription
will be applied to. If null or empty the subscription will be applied to all
information types known to the Information Brokering Service it is registered
with.

Raised Exceptions:

e Exception

subscri beAsync(expressi ons : String[], expressi onTypes : String[],
i nformati onTypeNanmes : List<String> resultsHandl er : |nputHandl er<I|nformation>)
String

This method is used to subscribe to information and setup the handler that will process
matching results as they are delivered to the consumer.

Arguments:

e expressions - The expressions to match information instances against.

e expressionTypes - The types of expressions. The entries in this array are expected
to map to entries in the expressions array on a 1-to-1 basis.

e informationTypeNames - The list of information type names that this subscription
will be applied to. If null or empty the subscription will be applied to all
information types known to the Information Brokering Service it is registered
with.

e resultsHandler - The handler for processing matching information instances as
they are delivered to the consumer. This handler is expected to generate any
required delivery receipts.

Raised Exceptions:

e Exception

query(expression : String, expressionType : String, informationTypeNanes
List<String>) : Listlnformation

Execute a synchronous query in the traditional manner, where the return of this method
is the actual result set of the query.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
87

Arguments:

e expression - The query expression to execute.
e expressionType - The type of query expression, i.e. "SQL" or "XQuery".

e informationTypeNames - The names of the information types that this query
should be executed over. If null or empty the expression will be executed over the
set of types that the executing Query Service is aware of.

Raised Exceptions:

e Exception

quer yAsync(expression : String, expressionType : String, informationTypeNanes
List<String>) : void

This method performs a fire-and-forget query execution where the actual consumers of
the query result set are determined by another mechanism.

Arguments:

e expression - The query expression to execute.
e expressionType - The type of query expression, i.e. "SQL" or "XQuery".

e informationTypeNames - The names of the information types that this query
should be executed over. If null or empty the expression will be executed over the
set of types that the executing Query Service is aware of.

Raised Exceptions:

e Exception

queryAsync(expression : String, expressionType : String, informationTypeNanes
Li st<String>, cont r ol Handl er : Handl er, resul t sHandl er
I nput Handl er<I nformation>) : String

Execute a query in asynchronous fashion, delivering the result set to the invoker.

Arguments:

e expression - The query expression to execute.
e expressionType - The type of query expression, i.e. "SQL" or "XQuery".

e informationTypeNames - The names of the information types that this query
should be executed over. If null or empty the expression will be executed over the
set of types that the executing Query Service is aware of.

e controlHandler - The handler for control interactions such as checking query
status or canceling the query.

e resultsHandler - The handler for processing the query result set as it is delivered.

Raised Exceptions:

e Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
88

Typical Use

This service is envisioned to be a policy enforcement point for Quality of Service (QoS) and/or
security applications. It will also function as a proxy for clients who do not wish to implement
complete Phoenix clients within their code.

Associated Diagrams
Use Cases

e UC 0000 Phoenix IM Capabilities

e UC 0012 Client Reach-Back
Activity Diagrams

e 0018 Client Reach-Back (Local Policy Capture & Enforcement)
Class Diagrams

e CD 0000 Phoenix IM Services

e CD 0012 Client Reach-Back

Sequence Diagrams

e None.

ClientRuntimeServiceConnector

This interface extends the Client Runtime Service interface, thereby exposing all of its methods
on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Client Runtime Service)

ClientRuntimeServiceContext

The Client Runtime Service Context is used to store and track the registered subscriptions and
active queries for an associated external actor, which is what we notionally call a client. The
minimum required attributes for this Context are: activeSubscriptionlds and activeQuerylds.

1. The list of activeSubscriptionlds contains the set of subscription IDs for subscriptions that
the associated client actor has registered with the IM Services.

2. The activeQuerylds list contains the IDs for all currently active queries that have been
executed by the associated client actor.

Public Operations

addActiveQuery(id : String) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
89

Add an active query to this client's state.

Arguments:

e id - The identifier for the active query.
addRegi st eredSubscription(id : String) : void

Add a subscription to this client's state.

Arguments:

e id - The identifier for the registered subscription.
get ActiveQuerylds() : List<String>

Retrieve the list of identifiers for all active and unfulfilled queries that have been
submitted by this client actor.

get Regi st eredSubscriptionlds() : List<String>

Retrieve the list of identifiers of all subscriptions for this client actor that are currently
registered with the Information Broker.

removeActiveQuery(id : String) : void
Remove a query from this client's state.

Arguments:

e id - The identifier of the query to be removed.

renmoveRegi st eredSubscription(id : String) : void
Remove a subscription from this client's state.

Arguments:
e id - The identifier for the subscription to be removed.

ClientRuntimeServiceStub

This interface extends the Client Runtime Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Client Runtime Service)

Event Notification

The event notification group contains the interfaces that define Phoenix’s event notification
service. The event notification interfaces are:

e EventDescriptorContext

e EventNotificationRequestContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
90

e EventNotificationService
e EventNotificationServiceConnector
e EventNotificationServiceContext

e EventNotificationServiceStub

EventDescriptorContext
A context for describing a registered event.

Public Operations

getRegistrationld() : String

Retrieve the registration ID for the described Event class.
get Description() : String

Retrieve the human readable and understandable description for the described Event
class.

EventNotificationRequestContext
A context for registering for event notifications.

Public Operations

addConsuner Channel (channel : Channel Context) : void
Add a consumer channel context to a specific subset of events.

Arguments:

e channel - The channel context

addEvent Descri ptorld(descriptorld : Ooject) : void
Add an Event class's registration ID to limit this request to a specific sub-set of events.

Arguments:

e descriptorld - The String containing the descriptor ID.
addFi ringActorld(firingActorld : Cbject) : void
Add a specific actor's ID to limit this request to a specific sub-set of actors.

Arguments:

e firingActorld - The String containing the ID for the firing actor.

get Consuner Channel s() : List<Channel Cont ext >

Retrieve the set of consumer channel contexts.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
91

get Event Descriptorlds() : List<String>

Retrieve the set of registration IDs for the events this request is limited to.
getFiringActorlds() : List<Cbject>

Retrieve the set of actor IDs for the actors this request is limited to.
removeConsuner Channel (contextld : String) : void

Removes a channel context based on the ID.

Arguments:

e contextld - The ID of the channel context that is to be removed.
renoveEvent Descriptorld(descriptorld : Object) : void
Remove an event class's registration ID from this request.

Arguments:

e descriptorld - The String denoting the descriptor ID to be removed.
removeFi ringActorld(firingActorld : Cbject) : void
Remove an actor ID from this request.

Arguments:
e firingActorld - The String denoting the actor ID to be removed.

EventNotificationService

This service extends the Base Channel Service and provides a central event delivery capability.
The logic describing when to fire an event and the construction of said event will reside within
other IM services, external to this service. Actors may register for delivery of events of a certain
type, or by using other implementation-specific criteria. When an event is fired by an IM service,
the event notification service will deliver said event to all registered entities whose criteria match
the fired event. The Phoenix IM services also support direct event communications between
actors via the notion of Event Channels. Direct event communication and the central event
notification service have been architected in such a way that both may be supported and utilized

by all Phoenix services and actors.

Public Operations

del et eEvent Descri pt or (sessionTrack : SessionTrack, eventlnstance
String) : void

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

descriptorld

e descriptorld - The identifier of the event descriptor that is to be deleted.

Raised Exceptions:

e Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
92

dropNoti ficati onRequest s(sessi onTrack : Sessi onTr ack, request | ds
List<String>) : void

Drop the identified notification requests.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e requestlds - The list of identifiers for the notification requests to be dropped.

Raised Exceptions:

e Exception

get Event Regi strati onl d(sessionTrack : SessionTrack, eventlnstance : Event)
String

Retrieve the registration identifier for a specific event class, if registered. If event class is
not registered, throw an exception.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e eventlnstance - A sample instance of the event to look up the registration
identifier for.

Raised Exceptions:

e Exception

| i st Regi st eredEvent Descri pt ors(sessi onTrack : Sessi onTr ack)
Li st <Event Descr i pt or Cont ext >

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception

notify(sessionTrack : SessionTrack, events : List<Event>) : void

Notify consumers of matching requests of the given events.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e events - The events that have been fired.

Raised Exceptions:

e Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
93

regi ster Event Descri ptor(sessionTrack : SessionTrack, eventlnstance : Event,
description : String) : String

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e event -
e description -

Raised Exceptions:

e Exception

regi sterNotificati onRequest (sessionTrack : Sessi onTr ack, request Ct xs
Li st<Event Noti fi cati onRequest Context>) : List<String>

Register a request to be notified of specific events as they occur within other services.
This method returns a list of identifiers for the specific Notification Requests.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e requestCtxs - The list of contexts describing the event notification requests to be
registered with the service.

Raised Exceptions:
e Exception

Typical Use

The notion of confirming delivery of information, or reporting the failure of delivery, is a specific
Use Case associated with the event notification concept supported by this architecture. There
have been four specific instances of delivery receipts identified by the design team:

1. Submission Service Acknowledgement (SACK) — This case covers the act of the
Submission Service signaling the producer that it received a specific instance of
information.

2. Submission Service Negative Acknowledgement (SNACK) — This case covers the act of
the Submission Service signaling the producer that it attempted, but failed, to receive a
specific instance of information.

3. Submission Service Muted Acknowledgement (SMACK) — This is the case where the
Submission Service provides neither a SACK nor a SNACK to the producer. This is the
default case for all submitted information.

4. Consumer Acknowledgement — This is the case where the producer wishes to be notified
that the consumers of its submitted information have indeed received it.

Logical combinations of these four instances of delivery receipts follow depending on the settings
of the Submission Service and the types of delivery receipt requested by the producer.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
94

Associated Diagrams

Use Cases
e UC 0000 Phoenix IM Capabilities
e UC 0001 Information Submission

e UC 0006 Event Notification

e UC 0008 Information Consumption (Subscription)
Activity Diagrams

e AD 0010 Event Notification
Class Diagrams

e CD 0000 Phoenix IM Services
e CD 0008 Event Notification
Sequence Diagrams

e SQD 0002 Information Submission (Submission ACK via ENS)

e SQD 0007 Brokering (Information — via Information Channel (Out-of-Band Delivery))

EventNotificationServiceConnector

This interface extends the Event Notification Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Event Notification Service)

EventNotificationServiceContext
A context specifically for the Event Notification Service.

Public Operations

get Regi st eredEvent Descri ptors() : List<EventDescri ptor Context>

Retrieve a listing of the registered event descriptors supported by the associated Event
Notification Service.
set Regi st eredEvent Descri ptors(event Descriptors : List<EventDescri ptor Cont ext>)
voi d

Set the listing of registered event descriptors supported by the associated Event
Notification Service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
95

e eventDescriptors - The listing of registered event descriptors supported by the
associated Event Notification Service.

EventNotificationServiceStub

This interface extends the Event Notification Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Event Notification Service)

Filter

The filter group provides the interfaces, contexts, and supporting components that define the
filtering capability described by the Phoenix architecture. The filter interfaces are:

e Filter

e FilterChain

e FilterChainContext

e FilterContext

e FilterManagementService

e FilterManagementServiceConnector

e FilterManagementServiceStub

Filter

Filters may be used by the Phoenix architecture to provide a mechanism by which data or
information may be transformed, enhanced, degraded, or processed in some way as it flows
through the IM system. Filters may be applied within a given service, component, or channel.
Filters may be used to apply security, QoS, or other policies. Filters are envisioned to support
any type of operation, from compression and decompression to removing sensitive data before
transmission.

Filters are created by actors and registered with the Filter Management Service.

Public Operations

activate() : void
Activate the mechanisms used by the filtering logic for this filter.

Raised Exceptions:

e Exception - if an error occurs during activation.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
96

deactivate() : void

Deactivate the mechanisms used by the filtering logic for this filter.

Raised Exceptions:

e Exception - if an error occurs during deactivation.
filter(object : Cbject) : hject

Take the given Object and perform some type of filtering logic and operation upon it. It
returns the filtered Object.

Arguments:

e object - The Object to be filtered.

Raised Exceptions:

e Exception - if an error occurs during filtering.
i sCbj ect Modi fied() : bool ean

Check if this filter modifies filtered objects. Return true if it does, False otherwise.
filter(object : Object) : noject

Take the given Object and perform some type of filtering logic and operation upon it. It
returns the filtered Object.

Arguments:

e oObject - The Object to be filtered.

Package Operations

setNextFilter(filter : Filter) : void

Set the next filter in the chain. This operation is used at filtering time to facilitate the
automatic execution of the next filter in the chain, if any exists.

e filter - The next filter in the chain.
FilterChain
A filter chain tracks and manages Filters that have been applied to an operation.

Public Operations

activate() : void
Activate the mechanisms used by the filtering logic for this filter chain.

Raised Exceptions:

e Exception - if an error occurs during activation.

deactivate() : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
97

Deactivate the mechanisms used by the filtering logic for this filter chain.

Raised Exceptions:

e Exception - if an error occurs during deactivation.
filter(object : Object) : hject

Take the given Object and perform some type of filtering logic and operation upon it. It
returns the filtered Object.

Arguments:

e object - The Object to be filtered.

Raised Exceptions:

e Exception - if an error occurs during filtering.

getFilterCount() : int

Returns the number of filters in the chain.
updateFilter(filterld : String, attributesToUpdate : Map<String, Object>) : void

Updates the specified attributes for the identified Filter.

Arguments:

e filterld - The identifier for the Filter to be updated.

e attributesToUpdate - The attributes to be updated.

i sCbj ect Modi fied() : bool ean

Check if any of the filters in this chain modifies the filtered objects. Return true if one or
more filters in the chain do modify the objects, False otherwise.

Package Operations

appendFilter(filter : Filter) : int

Insert a Filter into the chain of Filters at the end of the chain. This method returns the
index of the appended filter.

Arguments:

o filter - The Filter to be inserted at the end of the chain.

insertFilter(filter : Filter, index : int) : int

Insert a Filter into the chain of Filters at a specific location. This method returns the new
total number of Filters.

Arguments:

e filter - The Filter to be inserted.

e index - The index to insert the new Filter at.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
98

renoveFilter(filterld : String) : void
Remove the Filter with the given identifier.

Arguments:

o filterld - The identifier for the Filter to be removed.
removeFilter(index : int) : void
Remove the Filter at the given index in the filtering chain.

Arguments:
e index - The index of the Filter to be removed.

FilterChainContext

This context contains the implementation-specific attributes that describe a specific filter chain.
It is envisioned that some or all of the attributes may be used to tailor the behavior of the chain.

Public Operations

getFilterNaneList() : List<String>

Retrieve the names of the filters to be used to make the filter chain.
get I nput Type() : String

Retrieve the identifier for the type of Object being passed to the first Filter as input.
get Qut put Type() : String

Retrieve the identifier for the type of Object being returned by the last Filter as output.
setFilterNaneList(filterNames : List<String>) : void

Set the names of the filters to be used to make the filter chain.

o filterNames - The names of the filters to be used to make the filter chain.
set | nput Type(i nput Type : String) : void
Set the identifier for the type of Object being passed to the first Filter as input.
e inputType - The identifier for the type of Object being passed to the first Filter as
input.
set Qut put Type(out put Type : String) : void
Set the identifier for the type of Object being returned by the last Filter as output.

e outputType - The identifier for the type of Object being returned by the last Filter
as output.

FilterContext

This context contains the implementation-specific attributes that describe a particular filter. It is
envisioned that some or all of the attributes may be used to tailor the behavior of the filter.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
99

Public Operations

get I nput Type() : String

Retrieve the identifier for the type of Object being passed to the Filter as input.
get Modi fi esCbj ect() : bool ean

Get the flag that tells whether or not the associated filter modifies filtered objects.
get Qut put Type() : String

Retrieve the identifier for the type of Object being returned by the Filter as output.
set | nput Type(i nput Type : String) : void

Set the identifier for the type of Object being passed to the Filter as input.

e inputType - The identifier for the type of Object being passed to the Filter as
input.

set Modi fi esObj ect (nodi fi esObj ect : boolean) : void

Set the flag that tells whether or not the associated filter modifies filtered objects.
e modifiesObject - The flag that tells whether or not the associated filter modifies
filtered objects.
set Qut put Type(out put Type : String) : void
Set the identifier for the type of Object being returned by the Filter as output.

e outputType - The identifier for the type of Object being returned by the Filter as
output.

FilterManagementService

This service extends the Base Channel Service and is responsible for maintaining the registry of
filters to be used by actors and for creating orchestrated chains of these filters for use by actors
during filtering operations.

Public Operations

createFi |l terChai n(sessionTrack : Sessi onTr ack, orchestrati onCt x
Fil terChai nContext) : FilterChain

This method creates an orchestrated chain of filters based on the provided description of
the filtering operations to be undertaken.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e orchestrationCtx - The context that contains the description of the filtering
operations to be undertaken by the created chain of orchestrated filters.

Raised Exceptions:
e Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
100

dropFilters(sessionTrack : SessionTrack, filterlds : List<String>) : void
Drop the identified filters from the registry.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e filterlds - The identifiers of the filters to be removed from the registry.

Raised Exceptions:

e Exception
listRegisteredFilters() : List<FilterContext>

Retrieve the list of contexts that describe the registered filters.
regi sterFilters(sessionTrack : SessionTrack, filters : List<Filter>) : void

Add the provided filters to the registry.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
o filters - The filters to be added to the registry.

Raised Exceptions:

e Exception
Typical Use

It is envisioned that this service will be used by actors to register filter implementations in order
to facilitate the sharing of information shaping capabilities. This registry also enables the
discovery of information shaping capabilities. This service is also used by actors to create
customized filter chains for filtering data. An actor uses the FilterChainContext to describe the
filtering operations they wish to occur. This service accepts that context, looks up the
corresponding filter instances, checks the proposed orchestration chain for validity, and returns
the formed orchestration chain if everything checks out. If a filter is not found or a validation
check fails, an exception is thrown.

Associated Diagrams
Use Cases
e (None.)
Activity Diagrams
e (None.)
Class Diagrams
e CD 0000 Phoenix IM Services

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
101

Sequence Diagrams

e (None.)

FilterManagementServiceConnector

This interface extends the Filter Management Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Filter Management Service)

FilterManagementServiceStub

This interface extends the Filter Management Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Filter Management Service)

Information Discovery

The information discovery group contains the interfaces that define and support the information
discovery capability defined by the Phoenix architecture. The information discovery interfaces
are:

e InformationDiscoveryService
¢ InformationDiscoveryServiceConnector
e InformationDiscoveryServiceContext

e InformationDiscoveryServiceStub

InformationDiscoveryService

The Information Discovery Service (IDS) extends the Base Channel Service and provides a
simple interface for "discovering” what information types are known to the Information
Management (IM) services and what services are supporting which types.

Public Operations

get SupportingServi ces(sessionTrack : SessionTrack, informationTypeNane : String,
svcTypeExpressi on : Expressi onContext) : List<ServiceDescriptorContext>

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
102

Retrieve a set of contexts that describe the services that support the identified
information type and their available control channels. The returned contexts should
describe where to find the service and how to connect to it.

Arguments:
e sessionTrack - The pedigree of the invokers for this method.
e informationTypeName - The information type to find supporting services for.

e svcTypeExpression - An expression to be applied to the service types of the
services found to be supporting the provided information type name.

Raised Exceptions:

e Exception

get TypeDefinitions(sessionTrack : SessionTrack, expression : ExpressionContext)
Li st <l nf or mati onTypeCont ext >

Retrieve the type definitions whose information type names match the provided
expression.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e expression - The expression to be applied to the known information type names.

Raised Exceptions:
e Exception

Typical Use

This service is used in conjunction with other Phoenix services to provide a simple interface for
finding information and the services processing it.

Associated Diagrams

Use Cases

e UC 0000 Phoenix IM Capabilities

e UC 0003 Discovery (Information)
Activity Diagrams

e AD 0004 Discovery (Information)
Class Diagrams

e CD 0000 Phoenix IM Services

e CD 0002 Discovery (Information)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
103

Sequence Diagrams

e None.

InformationDiscoveryServiceConnector

This interface extends the Information Discovery Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Information Discovery Service)

InformationDiscoveryServiceContext
A service context specific to the Information Discovery Service.
Public Operations

None.

InformationDiscoveryServiceStub

This interface extends the Information Discovery Service, thereby inheriting and exposing all of
its methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Information Discovery Service)

Security

The security group contains the interfaces that define and support the Phoenix authorization
service. The security interfaces are:

e AuthorizationContext

e AuthorizationService

e AuthorizationServiceConnector
e AuthorizationResponse

e AuthorizationResponseType

e AuthorizationServiceStub

e MultipleAuthorizationContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
104

AuthorizationContext

This Context is used to provide the action, target, and any other information needed to submit a
request to the Authorization Service. The attributes will be used to determine whether or not a
specific actor is authorized to perform the specified action upon a particular target within the
architecture. This Context contains two standard attributes: action and target.

1. The action is the operation that has been requested.

2. The target is what entity, component, or piece of Information that is to be operated upon.

The abstract architecture lists some example values for each of these attributes, but the values
need to be determined by the implementation design team. As an example, they may be based
on some security policy implementation such as KAoS.

Public Operations

get Action() : nject

This method returns the action or operation that has been requested.

Example Actions

e ARCHIVE

e BROKER

e CONNECT
e CREATE

e DESTROY

e DISSEMINATE

e PERSIST
e QUERY
e SUBMIT

e SUBSCRIBE

get Sessionld() : Object

Get the session identifier of the actor who will be performing the action being authorized.
get Target () : Object

The target is what entity, component, or piece of managed information that is to be
operated upon.

Example Targets

e DATA_CHANNEL : BaseChannel

e |INFORMATION : Information

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
105

e SERVICE : BaseService

e SESSION : SessionContext
set Action(action : Cbject) : void
Set the action that has been requested.

Arguments:

e action - The action that has been requested.

set Sessi onl d(sessionld : Object) : void
Set the session identifier of the actor who will be performing the action being authorized.

Arguments:

e sessionld - The session identifier of the actor who will be performing the action
being authorized.

setTarget(target : Cbject) : void

Set the target (what entity, component, or piece of managed information that is to be
operated upon).

Arguments:

e target - The target (what entity, component, or piece of managed information
that is to be operated upon).

AuthorizationService
This service extends the Base Channel Service, thereby inheriting all its methods.

Actions within a SOA-based environment may be dependent upon some form of security policy or
restriction. This security authorization capability should be designed such that it may be a single
point of execution or a fully distributed and potentially uses a decentralized protocol. An
authorization could be requested for any operation by any service. An operation is defined by
this documentation as any action that is performed upon a set of targets by a set of actors.

Authorization is provided by a central or distributed service acting as a policy decision point for
the chosen implementing security policies. This service does not provide mechanisms for the
definition or capture of security policies due to the obvious differences in security policy
technologies. To provide such mechanisms would couple this abstract architecture too tightly to a
specific implementing policy engine. The process of authentication may be contained within an
authorization check undertaken sometime during the process of creating a new session and, as
such, no specific interface method has been defined for authentication operations.

Public Operations

i sAut hori zed(sessionTrack : Sessi onTr ack, ctx Aut hori zat i onCont ext)
Aut hori zati onResponse

Checks if an action is authorized for the given action, target, and actors. Returns the
AuthorizationResponse object that describes the result of the authorization check.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
106

e sessionTrack - The pedigree of the invokers for this method.
e ctx - The Context describing the operation being authorized.

Raised Exceptions:

e Exception
updat ePol i cy(sessi onTrack : SessionTrack, policy : Object) : void
Update the policy that this Authorization Service reasons upon.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e policy - An Object to update the policy with. What this is and how it is utilized are
up to the Authorization Service implementations.

Raised Exceptions:
e Exception
Typical Use
This service is envisioned to be used by other services to authorize their operations before they
are undertaken. Within the Phoenix IM Services, it is typically assumed that any operation upon

information as well as any operations that result in the creation, updating, or destruction of
entities should first be authorized.

Associated Diagrams

Use Cases

e UC 0000 Phoenix IM Capabilities

e UC 0010 Authorization
Activity Diagrams
e AD 0014 Authorization

Class Diagrams

e CD 0000 Phoenix IM Services

e CD 0013 Authorization

Sequence Diagrams

e SQD 0011 Session Management (Creation & Destruction)

AuthorizationServiceConnector

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
107

This interface extends the Authorization Service interface, thereby exposing all of its methods on
the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Authorization Service)

AuthorizationResponse

This interface describes the result of an authorization operation by wusing the
AuthorizationResponseType enumeration (Authorized, Not Authorized, or Indeterminate). It
provides a framework for developers to utilize when they need to describe the results of the
authorization attempt. There can optionally be an array of reasons for the given response. The
response also describes the obligations that should be performed as well.

Public Operations

get Reasons() : List<String>

Retrieve the listing of reasons for why the authorization attempt resulted in this type of
response.

get ResponseType() : Authorizati onResponseType
Retrieve the response type identifier. Possible values are defined by the
AuthorizationResponseType enumeration.

Package Operations

addReason(reason : String) : void
Add a reason to this response.

Arguments:

e reason - The reason to add to this response.

set ResponseType(responseType : Authori zati onResponseType) : void
Set the response type.

Arguments:

e responseType - The type of response. Possible values are defined by the
AuthorizationResponseType enumeration.

AuthorizationResponseType

Identifies the possible types of Authorization Responses defined by the Phoenix architecture.
Public Fields

AUTHORI ZED
The operation is authorized for the requesting actor according to the currently specified

policy.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
108

| NDETERM NATE

The Authorization Service is unable to determine if the operation is authorized for the
requesting actor.

NOT_AUTHCRI ZED

The operation is not authorized for the requesting actor based on the currently specified
policy.

AuthorizationServiceStub

This interface extends the Authorization Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Authorization Service)

MultipleAuthorizationContext

This context represents a container object for a set of operations to be authorized as a single
unit. This means that if one operation is not authorized or is indeterminate then the whole
operation set is marked as such.

Public Operations

addAut hori zati onRequest (action : Object, target : bject, sessionld : Object)
voi d

Add an authorization request to the set that represents the chain of operations to be
authorized as a single unit.

Arguments:

e action - The action for a specific authorization request in the chain.
e target - The target for a specific authorization request in the chain.

e sessionld - The session identifier for the actor who will be performing the action
being authorized.

get Aut hori zati onRequest s() Li st <Authori zati onCont ext >

Retrieve the set of authorization requests that represents the chain of operations to be
authorized.

Service Brokering

The service brokering group contains the interfaces that define and support Phoenix’s service
brokering service. The service brokering interfaces are:

e ServiceBrokeringQueryContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
109

e ServiceBrokeringService

e ServiceBrokeringServiceConnector
e ServiceBrokeringServiceContext

e ServiceBrokeringServiceStub

e ServiceDescriptorSchema

ServiceBrokeringQueryContext
A context used specifically for Service Brokering operations.

Public Operations

get Expression() : ExpressionCont ext
Retrieve the expression for this query.
| istStubProtocols() : List<String>

List the control channel protocols whose corresponding stubs this query context is
requesting.

set Expressi on(expression : ExpressionContext) : void
Set the expression for this query.

Arguments:

e expression - The expression for this query.

set St ubProt ocol s(protocols : List<String>) : void
Set the control channel protocols whose corresponding stubs this query context is
requesting.

Arguments:

e protocols - The control channel protocols whose corresponding stubs this query
context is requesting.

ServiceBrokeringService

This service extends the Base Channel Service and is responsible for maintaining a registry of
service descriptions associated with service control stubs. Control stubs are the entities used by
Phoenix actors to interact with services. Service descriptions may include fields such as what
specific information types a particular service supports or where it is physically located. The
control stub returned by a service brokering operation is used to invoke control methods for such
operations as setting up information channels.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
110

br oker For Ser vi ces(sessi onTr ack : Sessi onTr ack, constraints
Servi ceBrokeri ngQueryContext) : List<ServiceDescri ptorContext>

Broker for a set of services that satisfy the specified constraints. This method returns a
list of matching service descriptors.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e constraints - The defined criteria used to broker for matching services.

Raised Exceptions:

e Exception

get Servi ceDescri pt or Schema(sessi onTrack : SessionTrack, serviceType : String)
Servi ceDescri pt or Schema

Retrieve the schema being used by the Service Brokering Service to describe the
contents of a service descriptor for a specific service type.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e serviceType - The identifier of the descriptor schema to retrieve.

Raised Exceptions:

e Exception

regi sterService(sessi onTrack : Sessi onTr ack, svcDescri ptor Ct x
Servi ceDescri ptorContext) : void

Register the given description for the specified service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e svcDescriptorCtx - The Context object containing the description of the service to
be registered.

Raised Exceptions:
e Exception

Typical Use

This service provides a central registry for Phoenix services. It may be used in conjunction with
any or all of the other Phoenix services.

Associated Diagrams

Use Cases

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
111

e UC 0000 Phoenix IM Capabilities

e UC 0004 Brokering (Service)
Activity Diagrams

e AD 0007 Brokering (Service)
Class Diagrams

e CD 0000 Phoenix IM Services

e CD 0005 Brokering (Service)

Sequence Diagrams

. None.

ServiceBrokeringServiceConnector

This interface extends the Service Brokering Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Service Brokering Service)

ServiceBrokeringServiceContext

This service's Context contains the listing of ServiceContext instances describing all services
registered the Service Brokering Service. This is the listing that is brokered over to find a service
or services for an actor wishing to utilize some subset of capabilities provided by the IM Services.
The Service Broker Service Context contains a single required attribute, registeredServices that
contains a list of Service Contexts for all registered services. These Service Contexts may be
modified versions of those maintained by their parent services.

Public Operations

addRegi st eredService(ctx : ServiceContext) : void
Add a service to the list of registered services.

Arguments:

e ctx - The ServiceContext that describes the service that is being registered.
get Regi st eredServi ces() : List<ServiceContext>
Returns the list of the currently registered ServiceContexts.
renoveRegi st eredServi ce(serviceld : String) : void
Remove the specified service from the list of registered services.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
112

e serviceld - The identifier for the service to be removed.

ServiceBrokeringServiceStub

This interface extends the Service Brokering Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Service Brokering Service)

ServiceDescriptorSchema

An interface that defines a container object for the schemas used by the Service Brokering
Service to describe Phoenix services. These schemas are deliberately not tied to any specific
implementing technology to uphold the abstract nature of this architecture.

Public Operations

get Defi ni ti onDocunent () : Object

Retrieve the actual schema from this container object object that represents the
description for a specific type of service.

Package Operations

set DefinitionDocurment (definitionDoc : Cbject) : void

Set the actual schema for this container object that represents the description for a
specific type of service.

e definitionDoc - The actual schema for this container object that represents the
description for a specific type of service.

Session Management

The session management group contains the interfaces that define the session management
service for the Phoenix architecture. The session management interfaces are:

e SessionManagementService
e SessionManagementServiceConnector
e SessionManagementServiceContext

e SessionManagementServiceStub

SessionManagementService

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
113

This service extends the Base Channel Service and provides the necessary methods for creating
and maintaining actor sessions within the Phoenix architecture. When this service is included in a
deployed implementation, each and every actor must register a valid session before they are
able to utilize any of the resident services. A service that is implemented to support standalone
operations must provide this functionality internally (i.e. implement this interface) along with its
main service functionality. A standalone service may be implemented in such a way that the
service accommodates the fact that there is no notion of session maintained and that it is on its
own as far as session management and validation is concerned. What a standalone service
actually does in this case is up to the implementation designers, it may ignore the notion of
sessions entirely or it may implement some home-grown solution for session management.

Public Operations

createSession(actorCtx : ActorContext, brokerBack : bool ean) : Object

Create and maintain session state reflecting an actor's interactions with the IM services.
Returns the identifier for the session that was created.

Arguments:

e actorCtx - The Context object describing the actor for whom the session will be
created for.

e brokerBack - Flag telling this service whether the actor has requested a
ServiceBinding object for the Service Brokering Service or not.

Raised Exceptions:

e Exception
dest roySessi on(sessionTrack : SessionTrack, sessionld : Object) : void

Destroy the specified session.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e sessionld - The identifier for the session to be destroyed.

Raised Exceptions:

e Exception
get Di stinct Actors(sessionTrack : SessionTrack) : List<ActorContext>

This is a listing of the distinct actor ID's for all actors that have registered Sessions with
the Session Management Service. Returns a list of ActorContext objects that describe the
distinct actors that have created IM session(s).

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:
e Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
114

get Sessi onAttri buteVal ue(sessionTrack : Sessi onTr ack, sessionld bj ect,
attri buteNane : Object) : void

Retrieve a specific attribute for an identified session.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e sessionld - The identifier of the session whose Session Context is going to be
modified.

e attributeName - The name of the session attribute to be set.

e attributeValue - The new value for the specified session attribute.

Raised Exceptions:

e Exception

get Sessi onCont ext (sessi onTr ack : Sessi onTr ack, sessionld : hj ect)
Sessi onCont ext

This method retrieves the SessionContext for the given session identifier. Returns the
SessionContext object that describes the session identified by the given identifier.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e sessionld - The identifier of the session whose Session Context is going to be
retrieved.

Raised Exceptions:

e Exception

get Sessi onCont ext s(sessi onTrack : Sessi onTr ack, criteria : Cbj ect)
Li st >Sessi onCont ext <

Retrieve a set of sessions that share some criteria.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e criteria - The search criteria that all returned session contexts must match. This is
an object to allow implementations to choose their own way of characterizing and
searching the session contexts.

Raised Exceptions:

e Exception

|i st Regi st eredSessi onl ds(sessionTrack : SessionTrack) : List<String>
Arguments:
e sessionTrack - The pedigree of the invokers for this method.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
115

Raised Exceptions:

e Exception

set Sessi onAttri but eVal ue(sessi onTrack : Sessi onTr ack, sessionld oj ect,
attributeNane : String, attributeValue : Object) : void

Set a specific attribute for an identified session.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e sessionld - The identifier of the session whose Session Context is going to be
modified.

e attributeName - The name of the session attribute to be set.

e attributeValue - The new value for the specified session attribute.
Raised Exceptions:

e Exception

Typical Use

The Session Management Service provides a session management capability similar to those
provided by a web server.

Associated Diagrams
Use Cases

e UC 0000 Phoenix IM Capabilities

e UC 0011 Session Management
Activity Diagrams

e AD 0016 Session Management (Administrator)

e AD 0017 Session Management (User)

Class Diagrams

e CD 0000 Phoenix IM Services

e CD 0014 Session Management

Sequence Diagrams

e SQD 0011 Session Management (Creation & Destruction)

SessionManagementServiceConnector

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
116

This interface extends the Session Management Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Session Management Service)

SessionManagementServiceContext

This context contains the list of all active Sessions and the metadata describing them. It also
contains the maximum number of active Sessions allowed by this service. This context is used to
maintain the state of the active Sessions within the architecture at any given time. The Session
Management Service Context contains four attributes: activeSessions, maxNumberOfSessions,
numberOfSessions, and defaultSessionTTL.

1. The activeSessions attribute contains a list of all Session objects for the currently active
sessions.

2. The maxNumberOfSessions is the maximum number of supported sessions.

3. The numberOfSessions is the current number of active sessions being managed by the
associated Session Management Service.

4. The defaultSessionTTL is the amount of time, units to be determined by implementation,
for sessions to stay alive after they have been created or active and then gone inactive.
In other words, if a session is idle for this specified amount of time, it may be garbage
collected or invalidated depending upon the implementation.

Public Operations

get ActiveSessions() : List<SessionContext>

Retrieve the list of currently active session contexts.
get Def aul t Sessi onTi neToLi ve() : |ong

Retrieve the default time limit for this session to stay alive. The implementation of the
architecture must determine what this value should be.

get MaxSuppor t edSessions() : |ong

Retrieve the maximum number of concurrent sessions that can be maintained by the
associated implementation.

get Nunber Of Sessi ons() : |ong

Retrieve the number of currently active sessions being tracked by the associated
implementation of the Session Management Service.

SessionManagementServiceStub

This interface extends the Session Management Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Session Management Service)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
117

Subscription

The subscription group contains the interfaces that define the constructs used to support edge
actor subscription operations:

e BrokeringResultType

e ConsumerReport

e SubscriptionContext

e SubscriptionService

e SubscriptionServiceConnector
e SubscriptionServiceContext

e SubscriptionServiceStub

BrokeringResultType
This enumeration describes the possible results of an information brokering operation.

Public Fields

CONSUMER_LI ST

This flag represents the expression registrant’'s desire to receive consumer hit lists for
their submitted information via an Event Channel.
| NFORMATI ON

This flag represents the expression registrant's desire to receive information matching the
submitted expression via a Dissemination Service.

ConsumerReport

This enumeration lists the possible types of consumer lists that can be understood by the
Phoenix IM Services.

Public Fields

| N_BAND_ONLY

Identifies a list that contains only in-band consumers. The term "in-band"™ applies to
consumers who are using the Phoenix channels to receive information from the IM
Services.

OUT_OF _BAND ONLY
Identifies a list that contains only out-of-band consumers. The term "out-of-band" applies

to consumers who are not using the Phoenix channel to receive information from the IM
Services. These consumers handle their own data reception needs.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
118

ALL

Identifies a list that contains both in-band and out-of-band consumers.

SubscriptionContext

This class is used specifically for registering expressions with the Information Brokering Service
as subscriptions. Information brokering is the concurrent process of filtering the information that
specific consumers are interested in from a larger set of information as the information is made
available to the IM Services.

Public Operations

addConsuner Channel (consuner : Channel Context) : void
Add a consumer channel to receive the results of this subscription.

Arguments:

e consumer - The context describing the consumer channel to receive the results of
this subscription.

addExpr essi on(expression : ExpressionContext) : void
Add an expression to this subscription.

Arguments:

e expression - The expression to add to this subscription.

addl nformati onTypeNane(typeNane : String) : void
Add an information type name for this subscription to be applied to.

Arguments:

e infoTypeName - The information type name that this subscription will be applied
to.

get Brokeri ngResul t Type() : BrokeringResultType
Retrieve the brokering result type flag.
get Consuner Report Type() : Consuner Report

Retrieve the type of ConsumerReport, if any, to be returned as a result of a brokering
operation upon the associated expression.

get Fi rst Mat chFoundTi ne() : |ong
Retrieve the amount of time the consumer is willing to listen for the first result that
matches the associated subscription.

I i st Consuner Channel s() : List<Channel Cont ext >

Retrieve the entire list of consumer channels bound to this subscription.
I i st Expressions() : List<ExpressionContext>

Retrieve the entire list of expressions for this subscription.
listlnformati onTypeNames() : List<String>

Retrieve the information type names that this subscription applies to.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
119

set Brokeri ngResul t Type(resul t Type : BrokeringResult Type) : void
Set the brokering result type flag.

Arguments:

e resultType - The brokering result type flag.

set Consuner Report Type(report Type : ConsunerReport) : void

Set the type of ConsumerReport, if any, to be returned as a result of a brokering
operation upon the associated expression.

Arguments:

e reportType - The type of ConsumerReport, if any, to be returned as a result of a
brokering operation upon the associated expression.

set Fi r st Mat chFoundTi ne(fnft : long) : void

Set the amount of time the consumer is willing to listen for the first result that matches
the associated subscription.

Arguments:

e fmft - The amount of time the consumer is willing to listen for the first result that
matches the associated subscription.

SubscriptionService

This service extends the Base Channel Service and manages subscriptions for information. This
edge-facing service coordinates subscription registration across a set of Information Brokering
Services.

Public Operations
dropSubscri ptions(sessionTrack : SessionTrack, subscriptionlds : List<String>)
voi d
This method is used to drop subscriptions.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e subscriptionlds - The identifiers of the subscriptions to be dropped.

Raised Exceptions:

e Exception

regi sterSubscri pti ons(sessi onTrack : Sessi onTr ack, subscri pti onCont ext s
Li st <Subscri pti onContextlInterface>) : List<String>

This method is used to register subscriptions for evaluation. This method returns the
registered subscription identifiers.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
120

e sessionTrack - The pedigree of the invokers for this method.

e subscriptionContexts - The Context objects describing the expressions to be
registered.

Raised Exceptions:

e Exception

resuneSubscri ptions(sessionTrack : SessionTrack, subscriptionlds : List<String>)
voi d

Resume evaluation of the identified subscriptions.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e subscriptionlds - The identifiers of the subscriptions to resume evaluation over.

Raised Exceptions:

e Exception

suspendSubscri pti ons(sessi onTrack : Sessi onTr ack, subscri ptionl ds
List<String>) : void

Temporarily suspend evaluation of the identified subscriptions.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e subscriptionlds - The identifiers of the subscriptions to suspend evaluation over.

Raised Exceptions:

e Exception

updat eSubscri pti on(sessi onTrack : Sessi onTr ack, subscriptionld : String,
subscri pti onContext : SubscriptionContext) : void

Update the identified subscription.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e subscriptionld - The identifier of the subscription to be updated.

e subscriptionContext - The context containing the new settings for the
subscription.

Raised Exceptions:
e Exception

Typical Use

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
121

This service is used in conjunction with a set of Information Brokering Services to provide load
balancing for subscription expression evaluation operations.

Associated Diagrams

Use Cases

e UC 0000 Phoenix IM Capabilities

Activity Diagrams

Class Diagrams

e CD 0000 Phoenix IM Services

Sequence Diagrams

SubscriptionServiceConnector

This interface extends the Subscription Service interface, thereby exposing all of its methods on
the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Subscription Service)

SubscriptionServiceContext
An interface for a context for the Subscription Service.
Public Operations

None.

SubscriptionServiceStub

This interface extends the Subscription Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Subscription Service)

Streams Service Interfaces

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
122

Stream services are those that manage streams and actor's interactions with streams.

e Connection
e Stream Brokering
e Stream Discovery

e Stream Repository

Connection

The connection group contains the interfaces that define and support the multiplexed and
demultiplexed dissemination capability of the Phoenix architecture. The connection interfaces
are:

e ConnectionService

e ConnectionServiceConnector
e ConnectionServiceContext

e ConnectionServiceStub

e ConnectionGroup

e ConnectionGroupContext

ConnectionService

The Connection Service extends the Base Channel Service and is responsible for taking frames,
information, or bytes, from registered sources and delivering them to registered consumers.
Sources and consumers register with the service, and are multiplexed or demultiplexed through
a connection group. A connection group is the structure which encapsulates a group of inputs
and a group of outputs, for data to be forwarded between.

Public Operations

addConnecti onG oupConsuner s(session : SessionTrack, connectionGoupld : String,
consunerlds : List<String>) : void

Adds the specified consumer endpoints (referenced by consumerlds) to the list of outputs
for the connection group associated with the connectionGroupld parameter.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e connectionGroupld - The connection group identifier for the connection group to
add a consumer to.

e consumerlds - The identifiers of the consumers to be added.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
123

Raised Exceptions:

e Exception

addConnecti onG oupSour ces(session : SessionTrack, connectionGoupld : String,
sourcelds : List<String>) : void

Adds the specified source (referenced by sourceld) to the list of inputs for the connection
group associated with the connectionGroupld parameter.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e connectionGroupld - The connection group identifier for the connection group to
add a source to.

e sourcelds - The identifiers of the sources to be added.

Raised Exceptions:

e Exception

der egi st er Connecti onG oups(sessi on : Sessi onTr ack, connecti onG oupl ds
List<String>) : void

Removes the specified connection groups from the list of registered connection groups.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e connectionGrouplds - The connection group identifiers to be deregistered.

Raised Exceptions:

e Exception

der egi st er Consuner s(session : SessionTrack, consunerlds : List<String>) : void
Removes the specified consumers from the existing registered consumers.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e consumerlds - The consumer identifiers for the consumers to be deregistered.

Raised Exceptions:

e Exception

der egi st er Sources(session : SessionTrack, sourcelds : List<String>) : void
Removes the specified sources from the existing registered sources.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
124

e sourcelds - The source identifiers for the sources to be deregistered.

Raised Exceptions:

e Exception

get Al | Connecti onG oups(session : SessionTrack) : List<ConnectionG oupContext >
Retrieve a listing of all the connection groups currently registered with this service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception

get Al | Consuners(session : SessionTrack) : List<Channel Context>
Retrieve a listing of all of the consumers currently registered with this service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception

get Al | Sour ces(session : SessionTrack) : List<Channel Context>
Retrieve a listing of all of the sources currently registered with this service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception

get Connecti onG oupConsuner s(sessi on : SessionTrack, connectionGoupld : String)
Li st <Channel Cont ext >

Obtains a channel list of all of the current consumers for a specific connection group.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e connectionGroupld - The identifier of the connection group which the consumers
are associated with.

Raised Exceptions:

e Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
125

get Connecti onG oupCont ext (session : SessionTrack, connectionGoupld : String)
Connecti onGroupCont ext I nt erf ace

Retrieve a listing of the identifiers for all of the connection groups currently registered
with this service. This method returns a context that contains the requisite data.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e connectionGroupld - The identifier of the connection group.

Raised Exceptions:

e Exception

get Connecti onG oupSour ces(session : SessionTrack, connectionGoupld : String)
Li st <Channel Cont ext >

Obtains a channel list of all of the current sources for a specific connection group.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e connectionGroupld - The identifier of the connection group which the sources are
associated with.

Raised Exceptions:

e Exception

i sConnecti onGroupRegi stered(session : SessionTrack, connectionGoupld : String)
bool ean

Check if the identified connection group is registered with this service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e connectionGroupld - The identifier of the connection group.

Raised Exceptions:

e Exception
i sConsumer Regi st ered(session : SessionTrack, consunerld : String) : bool ean

Check if the identified consumer is registered with this service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e consumerGroupld - The identifier of the consumer.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
126

e Exception

i sConsuner Regi st eredW t hConnecti onG oup(sessi on

: Sessi onTr ack,
connectionGoupld : String, consunerld : String) : bool ean

Check if the identified consumer is registered with a specific connection group on this
service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e connectionGroupld - The identifier of the connection group.

e consumerld - The identifier of the consumer.

Raised Exceptions:

e Exception

i sSour ceRegi st ered(session : SessionTrack, sourceld : String) : bool ean

Check if the identified source is registered with this service.
Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e sourceld - The identifier of the source.

Raised Exceptions:

e Exception

i sSour ceRegi st eredW t hConnecti onGroup(session : SessionTrack, connectionG oupld
String, sourceld : String) : bool ean

Check if the identified source is registered with a specific connection group on this
service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e connectionGroupld - The identifier of the connection group.

e sourceld - The identifier of the source.

Raised Exceptions:

e Exception

regi ster Connecti onG oups(session : SessionTrack, connectionGoupld : String,
groupCont exts : List<Connecti onG oupContext>) : List<String>
Register the connection group on this service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
127

e sessionTrack - The pedigree of the invokers for this method.
e groupContexts - The connection group contexts

Raised Exceptions:

e Exception

regi st er Consuner s(sessi on : Sessi onTr ack, connecti onG oupl d : String,
channel Cont exts : List<Channel Context>) : List<String>

Registers consumers to receive data. This method returns the identifiers for the
registered consumers.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e channelContexts - The list of ChannelContexts that describe the consumers to be
registered.

Raised Exceptions:

e Exception

regi st er Sour ces(sessi on : Sessi onTr ack, connecti onG oupld : String,
channel Contexts : List<Channel Context>) : List<String>

Registers sources to stream data. This method returns the identifiers for the newly
registered sources.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e channelContexts - The list of ChannelContexts that describe the sources to be
registered.

Raised Exceptions:

e Exception

renoveConnect i onG oupConsuner s(session Sessi onTr ack, connecti onG oupl d
String, consumerlds : List<String>) : void

Drops the specified consumers referenced by consumerlds from the list of outputs for the
connection group associated with the connectionGroupld parameter.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e connectionGroupld - The identifier of the connection group.

e consumerlds - The list of consumers to be removed from membership in the
connection group.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
128

e Exception

renoveConnect i onG oupSour ces(sessi on Sessi onTrack, connectionGoupld : String,

sourcelds : List<String>) : void
Drops the specified sources referenced by sourcelds from the list of inputs for the
connection group associated with the connectionGroupld parameter.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e connectionGroupld - The identifier of the connection group.

sourcelds - The list of sources to be removed from membership in the connection
group.

Raised Exceptions:

e Exception

reset Connecti onG oups(session : SessionTrack, connectionGouplds : List<String>)

voi d
Drops all sources and consumers from the connection group, but keeps the connection
group registered with the service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e connectionGrouplds - The identifiers of the connection groups to reset.

Raised Exceptions:

e Exception

reset Consuners(sessi on : SessionTrack, consunerlds : List<String>) voi d
Drops all connection group connections with the associated consumers, but keeps the

consumer endpoints registered with the service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e consumerlds - The identifiers of the consumers to reset.

Raised Exceptions:

e Exception
reset Sour ces(session : SessionTrack, sourcelds : List<String>) : void
Drops all connection group connections with the associated sources, but keeps the source

endpoints registered with the service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
129

e sessionTrack - The pedigree of the invokers for this method.
e sourcelds - The identifiers of the sources to reset.

Raised Exceptions:

e Exception
Typical Use

This service can be used by itself to combine source feeds or to perform scatter/gather signaling
to consumers. It can also be used as a disseminator for the StreamBrokering Service, which
wraps much of the functionality in order to manage streams. The purpose of the service is to
manage source and consumer connections into functional disseminators which are fixed until
reorganized, rather than have connections dynamically managed at the time an information
object is flowing through the services for processing. The connections are essentially 'pre-
brokered', which is more optimal for streams, and removes unnecessary overhead.

Associated Diagrams

Class Diagrams

e CD 0000 Phoenix IM Services

ConnectionServiceConnector

This interface extends the Connection Service interface, thereby exposing all of its methods on
the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Connection Service)

ConnectionServiceContext

The Context for the Connection Service holds the list of registered consumers, sources
(publishers), and connection groups. The list of registeredConsumers contains the Contexts that
describe the end points for all consumers who have been registered with the associated
Disseminator Service. The maxNumberOfConsumers is the maximum number of supported
consumers. The maxNumberOfSources is the maximum number of supported sources. The
maxNumberOfConnectionGroups is the maximum number of supported connection groups this
service will support. The numberOfRegisteredConsumers is the current number of consumers
who have registered with the associated Connection Service. The numberOfRegisteredSources is
the current number of sources who have registered with the associated Connection Service. The
numberOfRegisteredConnectionGroups is the current number of connection groups who have
registered with the associated Connection Service.

Public Operations

addConnecti onG oup(connecti onG oup : ConnectionG oup) : void

Add a registered connection group.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
130

Arguments:

e connectionGroup - The ConnectionGroup to add as a member of the service.

addConnecti onG oupConsuner (connecti onGoupld : String, consunerld : String)
voi d

Map a registered consumer connection to a registered connection group.

Arguments:

e connectionGroupld - The ConnectionGroup identifier to link the consumer to.

e consumerld - The consumer identifier for the consumer to route data from the
connection group to.

addConnecti onG oupSour ce(connecti onG oupld : String, sourceld : String) : |ong
Map a registered source connection to a registered connection group.

Arguments:

e connectionGroupld - The ConnectionGroup identifier to link the source to.

e sourceld - The source identifier for the source from which to route data.

addRegi st er edConsuner (consuner | denti fi er : String, consuner Channel Cont ext
Channel Context) : void

Add a registered consumer's information to the service context.

Arguments:

e consumerldentifier - The identifier for the consumer to be added.
e consumerChannelContext - The output channel context for the consumer.

Raised Exceptions:

e Exception

addRegi st er edSour ce(sourcel dentifier : String, sour ceChannel Cont ext
Channel Context) : void

Add a registered source's information to the service context.

Arguments:

e sourceldentifier - The identifier for the source to be added.
e sourceChannelContext - The input channel context for the source.

Raised Exceptions:

e Exception
get Connecti onG oup(connectionG oupld : String) : ConnectionG oup

Retrieve the connection group by id.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
131

Arguments:

e connectionGroupld - The identifier for the connection group to be retrieved.

get Connecti onG oups() : Map <String, ConnectionG oup>

Retrieve the set of currently registered connection groups.
get Consuner sConnecti onG oups() : Map <String, List<ConnectionG oup>>

Retrieve the set of currently registered connection groups according to their consumer.
get MaxSuppor t edConnecti onG oups() : |ong

Retrieve the theoretical maximum number of concurrent connection groups that the
associated parent service can support.

get MaxSupport edConsuners() : |ong

Retrieve the theoretical maximum number of concurrent consumers that the associated
parent service can support.

get MaxSuppor t edSources() : |ong

Retrieve the theoretical maximum number of concurrent sources that the associated
parent service can support.

get Nunber O Regi st er edConnecti onGroups() : |ong

Retrieve the current number of registered connection groups.
get Nunber O Regi st eredConsuners() : |ong

Retrieve the current number of registered consumers.
get Nunber Of Regi st eredSources() : |ong

Retrieve the current number of registered sources.
get Regi st eredConsuners()() : Map <String, Channel Context>

Retrieve the set of currently registered consumers.
get Regi st eredSources()() : Map <String, Channel Context >

Retrieve the set of currently registered sources.
get Sour cesConnecti onG oups() : Map <String, List<ConnectionG oup>>

Retrieve the set of currently registered connection groups according to their source.
renoveConnecti onG oup(connecti onG oupld : String) : ConnectionG oup

Remove the identified connection group.

Arguments:

e connectionGroupld - The identifier for the connection group to be removed.

removeConnect i onG oupConsuner (connecti onGoupld : String, consunerld : String)
bool ean

Remove the registered consumer from the connection group.

Arguments:

e connectionGroupld - The identifier for the connection group to remove a
consumer from.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
132

e consumerld - The identifier for the consumer to remove.

renoveConnect i onG oupSour ce(connecti onG oupld : String, sourceld : String)
bool ean

Remove the registered source from the connection group.

Arguments:

e connectionGroupld - The identifier for the connection group to remove a
consumer from.

e sourceld - The identifier for the source to remove.
removeRegi st eredConsumner (consunerld : String) : Channel Cont ext

Remove the identified consumer's information from the list of registered consumers.

Arguments:

e consumerld - The identifier for the consumer to remove.
renoveRegi st eredSour ce(sourceld : String) : Channel Cont ext
Remove the identified source's information from the list of registered sources.

Arguments:

e sourceld - The identifier for the source to remove.
set MaxSupport edConnecti onG oups(nmax : long) : void

Set the maximum number of concurrently supported connection groups for this service.

Arguments:
e max - The maximum number of concurrently supported connection groups for this
service.

set MaxSupport edConsuners(max : long) : void
Set the maximum number of concurrently supported consumers for this service.

Arguments:

e max - The maximum number of concurrently supported consumers for this
service.

set MaxSupportedSources(max : long) : void
Set the maximum number of concurrently supported sources for this service.

Arguments:

e max - The maximum number of concurrently supported sources for this service.

ConnectionServiceStub

This interface extends the Connection Service, thereby inheriting and exposing all of its methods
on the stub side of the Phoenix control channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
133

Public Operations

(Inherited from the Connection Service)

ConnectionGroup

A Connection Group. A Connection Group contains a context and some type of structure for
managing source and consumer memberships. A Connection Group, simplistically, is a set of
source channels and a set of consumer channels, all tied together in membership for the purpose
of multiplexing or de-multiplexing.

Connection Group allows for subclasses to type the input channels and output channels. So some
extensions could define the channels as a channel-wrapped buffer, and others could use the
transport itself. These are typed as 'InputChannel’ and 'OutputChannel’ 'InChannel’ - The input
channel format for the application level source members. '‘OutChannel’ - The output channel
format for the application level consumer members.

Public Operations

get Connecti onG oupContext () : Connecti onG oupCont ext

Retrieve the connection group context, which contains the id and attributes of the
connection group.

get ConnectionG oupld() : String

Retrieve the connection group unique identifier.
reset() : void

Reset the connection group. This will remove all of the sources and consumers for this
connection group.

Raised Exceptions:

e ChannelException
set Connecti onG oupCont ext (connecti onG oupCxt : Connecti onG oupContext) : void
Set the ConnectionGroupContext.

Arguments:

e connectionGroupCxt - The connection group context, which contains metadata
regarding the setup of the multiplexing/de-multiplexing

set Connecti onG oupl d(connecti onGroupld : String) : void
Set the connection group unique identifier.

Arguments:
e connectionGroupld - The identifier for the connection group.

ConnectionGroupContext

A Connection Group Context. Is the container for configuration of a connection group.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
134

Public Operations

get Connecti onG oupChannel Type() : Channel Type

Get the connection group channel type, which all of the sources and sinks for this
connection group must comply with.

get Connecti onG oupld() : String

Retrieve the connection group unique identifier.
i sManyConsuner sAl l owed() : String

Checks whether the consumers are forced to be One or Many.
i sManySour cesAl owed() : String

Checks whether the sources are forced to be one or many.
set Connecti onG oupChannel Type(channel Type : Channel Type) : void

Set the connection group channel type.

Arguments:

e channelType - The channel type for all associated sources and consumers.

set Connecti onG oupld(id : String) : void
Set the connection group unique identifier.

Arguments:

e id - The identifier for the connection group.
set ManyConsuner sAl | owed(fl ag : boolean) : void
Determines whether the consumers are forced to be one or many.

Arguments:

e id - Whether or not more than one consumer is allowed for this connection group

set ManySour cesAl | owed(fl ag : bool ean) : void
Determines whether the sources are forced to be one or many.

Arguments:

e id - Whether or not more than one source is allowed for this connection group
Stream Brokering

The streambrokering group contains the interfaces that define and support the stream brokering
and registration/management capability of the Phoenix architecture. The streambrokering
interfaces are:

e AttributeType

e StreamBrokeringServiceConnector

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
135

e StreamBrokeringServiceContext
e StreamBrokeringService

e StreamBrokeringServiceStub

e StreamContext

e StreamHeaderAttribute

e StreamHeader

e StreamSubscriptionContext

AttributeType

This enumeration contains the possible types of attributes for stream header attributes defined
by the Phoenix architecture.

Public Fields

I NT

Base Primitive, integer value type.
SHORT

Base Primitive, short value type.
DOUBLE

Base Primitive, double value type.
FLOAT

Base Primitive, float value type.
LONG

Base Primitive, long value type.
STRI NG

Base Primitive, string value type.
BYTE

Base Primitive, byte value type.
BOOLEAN

Base Primitive, boolean value type.

StreamBrokeringServiceConnector

This interface extends the Stream Brokering Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
136

(Inherited from the Stream Brokering Service)

StreamBrokeringServiceContext

The service context specific to the Stream Brokering Service. It is the manager of the stream,
stream expression, and contributor membership.

Public Operations
addConnecti onServi ceAssoci ati on(connecti onService : Connecti onSer vi ceSt ub)
voi d
Add a connection service association for the use of the stream brokering service.
Arguments:

e connectionService - The ConnectionServiceStub The connection service stub to
add to the list of available connection service associations.

Raised Exceptions:

e Exception

addContri but or Context (contributorld : String, channel Context : Channel Context)
voi d
Add a contributor channel context to those held by this service.

Arguments:

e contributorld - The id of the contributor to which the context belongs.

e channelContext - The context to add to our listings.
addStreamCont ext (streanmid : String, streanContext : StreanContext) : void
Add a stream context to those held by this service.

Arguments:

e streamld - The stream context to add to our listings.
e streamContext - The stream context to add to our listings.

addStreanBSubscri pti onCont ext (subCont ext | d : String, subCont ext
St reanSubscri ptionContext) : void

Add a stream subscription context to those held by this service.

Arguments:

e subContextld - The id of the stream subscription to which the context belongs.

e subContext - The context to add to our listings.

get Avai | abl eConnecti onServices() : List<ConnectionServiceStub>

Get the list of all available connection services which we can route streams through.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
137

Raised Exceptions:

e Exception
get Contri but or Contexts() : List<Channel Cont ext>
Get all of the contributor channel contexts held by this service.
get St reamCont ext (streanContextld : String) : StreanContext

Get the stream context referenced by the passed identifier.

Arguments:

e streamContextld - The stream context identifier..

get StreanContexts() : List<StreanContext>
Get the stream subscription context referenced by the passed identifier.
get St reanSubscri pti onCont ext (streanSubscri pti onContextld
St reanBSubscri pti onCont ext
Get the stream subscription context referenced by the passed identifier.

String)

Arguments:

e streamSubscriptionContextld - The stream subscription context identifier.

get St reanSubscri pti onContexts() : List<StreanBubscripti onContext>

Get the stream subscription context referenced by the passed identifier.
renmoveConnect i onServi ceAssoci ati on(csStub : ConnectionServiceStub) : bool ean
Remove a connection service association from the list of those available for use by the
stream brokering service.

Arguments:

e csStub - The Connection Service Stub to remove.

Raised Exceptions:

e Exception

renmoveCont ri but or Channel Cont ext (contributorld : String) : Channel Cont ext
Remove the channel context referenced by the passed contributor identifier.

Arguments:

e contributorld - The Channel Context to remove.

renoveStreantContext (streamd : String) : StreanContext

Remove the stream context referenced by the passed parameter.

Arguments:

e streamld - The stream id referencing the stream context to be removed.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
138

removeSt r eanSubscri pti onCont ext (st reanSubscri ptionld : String)
St reanSubscri pt i onCont ext

Remove the stream subscription context referenced by the passed parameter.

Arguments:

e streamld - The stream subscription id referencing the stream subscription to be
removed.

set Avai | abl eConnecti onServi ces(servicelList : List<ConnectionServiceStub>) : void
Set the list of all available connection services which we can route streams through.

Arguments:

e servicelist - The connection services available for use by this service.

Raised Exceptions:
e Exception

StreamBrokeringService

The Stream Brokering Service interface extends the Base Channel Service interface and offers
the capability of registering a stream to stream producers, and subscribing to streams to
consumers. The Stream Brokering Service wraps the functionality of Connection Service with
Stream administration. Membership of streams, including their publication source's metadata and
identity, consumers using stream-based expressions, and the registration of the stream
definition itself, are all part of the Stream paradigm for this service. Data does not flow through
this service (that is routed through a connection service) but the control and management
operations for a stream are administered through this service.

Public Operations

deregi sterStreanContri butor (sessionTrack : SessionTrack, streamd : String,
contributorld : String) : void

Deregister a stream contributor from a stream.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e streamld - The contributorld to deregister from a stream.
e contributorld - The stream which the contributor is deregistering from.

Raised Exceptions:

e Exception
deregi sterStreans(sessionTrack : SessionTrack, streamds : List<String>) : void
Deregister a list of specified streams from the service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
139

e sessionTrack - The pedigree of the invokers for this method.
e streamlds - The stream ids of the Streams to deregister from this service.

Raised Exceptions:

e Exception

dropSt reanBSubscri ptions(sessionTrack : SessionTrack, streanSubscriptionlds
List<String>) : void

Drop the specified list of stream expressions as specified in the list by their stream
expression ids. Drop means to completely remove. Suspend is temporary, but drop is
permanent, unless the expression is added again.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e streamSubscriptionlds - The Stream expression context identifiers for the
expressions to drop.

Raised Exceptions:

e Exception
get Al | StreantCont ext s(sessionTrack : SessionTrack) : List<StreanContext>

Get the list of streams registered with this service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception

get Al | StreanBSubscri pti onCont ext s(sessi onTrack : Sessi onTr ack)
Li st <Expr essi onCont ext >

Get the list of stream expressions registered with this service.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception

get Al | Regi st eredStreanContri butors(sessi onTrack : Sessi onTr ack)
Li st <Channel Cont ext >

Get the list of stream contributor channel contexts registered with this service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
140

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

e Exception

get StreantCont ext (sessi onTrack : SessionTrack, streamld : String) : StreanContext

Get the stream context for a specific stream. This allows someone to check the attributes
of a stream before deciding to subscribe to it.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e streamld - The stream id for the StreamContext to return

Raised Exceptions:

e Exception

get St reanSubscri pti onCont ext (sessi onTrack : SessionTrack, streanSubscriptionld
String) : ExpressionContext

Get the stream expression context associated with a subscription which was submitted
previously.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e streamSubscriptionContextld - The stream expression context identifier to
retrieve.

Raised Exceptions:

e Exception

regi sterStreans(sessionTrack : Sessi onTr ack, streantCont ext s
Li st <StreanContext>) : List<String>

Register the stream with this service. The stream will be setup for stream expression
matching from future consumer's subscriptions.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e streamContexts - The stream contexts which contains all necessary fields and
attributes for defining the new streams.

Raised Exceptions:

e Exception

regi sterStreanContri butor(sessionTrack : Sessi onTr ack, streamd String,
streantCont exts : Channel Context) : Channel Cont ext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
141

Register a stream producer with this service. The stream will be setup for stream
expression matching from future consumer's subscriptions.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e streamld - The stream which the contributor is registering with.

e channelContext - The channel context which contains all necessary fields and
attributes for defining a channel to publish to a stream.

Raised Exceptions:

e Exception

regi sterStreanSubscriptions(sessionTrack : SessionTrack, streanSubscriptions
Li st <Expressi onContext>) : List<String>

Register one or more stream expressions with the service, which will allow for the
associated endpoints to be pushed the data at the time of publication.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e streamSubscriptions - The subscriptions to perform stream matching to.

Raised Exceptions:

e Exception

resuneSt r eanSubscri pti ons(sessionTrack : SessionTrack, streanSubscriptionlds
List<String>) : void
Resume certain stream subscriptions. Subscriptions must be in suspended state first,
otherwise resuming has no effect. Expressions will have to be re-brokered at the time of

being resumed.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e streamSubscriptionlds - The stream subscription identifiers for the stream
subscriptions to resume distribution of their matching streams to.

Raised Exceptions:

e Exception
suspendSt reanSubscri ptions(sessionTrack : SessionTrack, streanSubscriptionlds
List<String>) : void
Suspend certain stream subscriptions, removing them from those being distributed the
streaming data until they are resumed.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
142

e sessionTrack - The pedigree of the invokers for this method.

e streamSubscriptionlds - The stream subscription identifiers for the stream
subscriptions to suspend.

Raised Exceptions:

e Exception

updat eRegi st eredSt r eans(sessi onTr ack : Sessi onTr ack, streantCont ext s
Li st <StreanmContext>) : void

Update the registered stream with new context attributes and settings. Overrides any
existing stream definition, and causes a re-mapping of the brokered consumer list for
stream data dissemination. Stream's channel type and id must be the same, but all other
criteria are changeable.

Arguments:
e sessionTrack - The pedigree of the invokers for this method.

e expressionlds - The stream contexts to update to these new definitions.

Raised Exceptions:
e Exception
Typical Use

This service is used to simplify the operations of stream management, as well as the intricacies
of the connection service, by providing a wrapper which does much of the work for the producer
and consumer in terms of stream registration being converted to a connection group definition, a
consumer and source being registered and added as members of that connection group based on
the stream expression or their stream Id. The main purpose of this service however, and why it
is typically used, is because it uses the ontological terms and language of streaming so that the
operations of the connection service can be much easier related to, and also specialized for
streaming functionality. The stream channel types allowed are information, frame, and byte.

As such, the Context containing this service's state may contain the Connection Service Bindings
and the mappings of the stream contributors and expressions to their matching streams.

Associated Diagrams

Class Diagrams

e CD 0000 Phoenix IM Services

StreamBrokeringServiceStub

This interface extends the Stream Brokering Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
143

(Inherited from the Stream Brokering Service)

StreamContext

The context of a stream contains the attributes and stream associated data, so it can be
registered, subscribed to, and matches for consumer membership determined based on its
contents. A Stream has a set of fixed metadata which are not to change throughout the life of
the stream. It has other attributes which are variable and allowed to change over its lifecycle;
these are the individual payloads of the stream.

Public Operations

get Channel Type() : Channel Type

Get the channel type associated with the stream.
set Channel Type(channel Type : Channel Type) : void

Set the channel type associated with the stream.

Arguments:

e channelType - The channel type which all data in the stream must be formatted
into.

get Publ i sher Met adata() : Map<String, String>

Retrieve the metadata associated with all publishers tied to this Stream.
get Publ i sher Contexts() : Map<String, BaseContext>

Retrieve the context associated with all publishers tied to this Stream.
getStream d() : String

Get the stream id for the stream which is described by this context.
get StreamNane() : String

Get the name of the stream for this stream context.
get Streamvet adata() : String

Get the stream metadata. This is what defines the stream, so that stream subscriptions
can be matched against it to determine the feed consumers for the stream.

get StreanmHeader Definition() : String

Get the stream header definition. This is the outline of the stream header, and can be
used to define the bytes which are sent across as the header.

addPubl i sher Met adat a(publ i sherld : String, publisherMetadata : String) : void
Add the publisher metadata to those associated with the stream.

Arguments:
e publisherld - The identifier for the publisher being added as a contributor to the
stream.

e publisherMetadata - The metadata associated with the publisher being added.

addPubl i sher Cont ext (publisherld : String, publisherContext : BaseContext) : void

Add the publisher context to those associated with the stream.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
144

Arguments:

e publisherld - The identifier for the publisher.

e publisherContext - The context associated with the publisher being added.

set Stream d(streamd : String,) : void
Set the stream id for the stream associated with this context.

Arguments:

e streamld - The stream identifier.
set StreamNane(streamNane : String,) : void

Set the stream name for the stream associated with this context.

Arguments:

e streamName - The name of the stream associated with this context.

set StreaniVet adat a(streanVetadata : String,) : void

Set the stream metadata, which will be used to match stream subscriptions with stream
contexts, administrating stream membership.

Arguments:

e streamMetadata - The stream metadata.

set StreanHeader Defi ni ti on(streanHeader : StreanHeader) : void
Set the stream header definition for the stream associated with this context.

Arguments:

e streamHeader - The stream header definition.
removePubl i sher Met adat a(publisherld : String) : String

Remove the publisher metadata from the list of publisher metadata for the stream.

Arguments:

e publisherld - The publisher id whose metadta will be removed from the stream.

removePubl i sher Cont ext (publisherld : String) : BaseContext
Remove the publisher context from the list of publisher contexts for the stream.

Arguments:

e publisherld - The publisher id whose context will be removed from the stream.

StreamHeaderAttribute<T>
An individual attribute of a stream header, this interface defines what an attribute is, and

outlines what it can consist of.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
145

Public Operations

get Attri buteType() : <AttributeType>

Get the attribute type for this attribute.
set Attri buteNanme(attributevValue : <T>) : void

Set the attribute name itself.

Arguments:

e attributeValue - The attribute to set as the new value.

get AttributeName() : String

Get the attribute name.
getAttributeDescription() : String

Get the description which explains the relevance, purpose, and other details about the
attribute.

set Attri but eDescription(description : String) : void
Set the attribute description. For ease of use.

Arguments:

e description - The description of this attribute. Will replace any existing value.
get AttributeLength() : String

Get the length of this attribute. Assists in the definition of any protocol or header
definition which relies on this attribute.

setAttributeLength(length : int) : void

Set the length of this attribute. Assists in the definition of any protocol or header
definition which relies on this attribute.

Arguments:

e length - The length of the attribute. This is the length in regards to the number of
bytes of the attribute value.

set Fi xedLength(flag : bool ean) : void

Set the flag which describes whether the attribute is fixed length or variable. If variable,
likely KLV, torrent, or other format should be used.

Arguments:

o flag - Whether the attribute is fixed length or not.

i sFi xedLengt h() : bool ean

Get the flag which describes whether the attribute is fixed length or variable. If variable,
likely KLV, torrent, or other format should be used.

StreamHeader

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
146

The header for a stream. This is custom-implemented to the stream. The stream may have just a
base header, or may have a more extended, additional header for specific tags to be included in
the header which will be informative to the end-consumer or to the broker.

Public Operations

addHeader Attri but e(streanHeader Attri bute : StreanHeaderAttribute) : void

Add a header attribute for the stream header. The header attributes are in order of their
addition to the header, first to last.

Arguments:

e streamHeaderAttribute - The attribute to append to the header.

renoveHeader Attri but e(streantHeader Attri bute : StreanHeaderAttribute) : bool ean
Remove a specific header attribute from the header.

Arguments:

e streamHeaderAttribute - The header attribute to remove.
get Header Attri butes() : List<StreanHeaderAttribute>

Get the complete list of attached stream header attributes. The order the are in the list is
the order they will be encoded into the header.

get Header For mat Type() : Header For mat Type>

The header format type. This describes the encoding for how to interpret the bytes of the
stream header.

StreamSubscriptionContext

The context for a stream subscription. Contains the expression associated with the subscription,
a subscription identifier, and a list of the consumers currently registered as data receivers for
this stream subscription. This is a server side structure meant to support easy cataloging of
stream-based expressions and their matching consumers, or, at least all of the consumers which
the Stream Brokering Service has ownership of. Stream expression matching is a little of a
different beast than information brokering. Information is brokered on an object by object basis,
however, a stream is brokered just once, and then all segments of the stream are assumed to
match the consumers which are already members of the stream.

Public Operations

addConsuner Channel (consuner : Channel Context) : void

Add a consumer channel to receive the results of this stream subscription.

Arguments:

e consumer - The context describing the consumer channel to receive the results of
this stream subscription.

get Expression() : Expressi onCont ext

Get the context for the stream expression associated with this subscription.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
147

get Subscri ptionl d(streantHeader Attribute : StreanHeaderAttribute) : String

Get the subscription id for this stream subscription context.
[i st Consuner Channel s() : List<Channel Context >

Retrieve the entire list of consumer channels bound to this stream subscription.
| i st Regi steredConsuners() : List<String>

List the registered consumers who are applicable to this stream subscription in a list of
strings.
set Expr essi on(expressi onCont ext : ExpressionContext) : void

Set the context for the stream expression associated with this stream subscription.

Arguments:

e expressionContext - The expression context.

set Regi st eredConsuner sLi st (consunerlList : List<String>) : void
Set the list of consumers who are associated with this stream subscription.

Arguments:

e consumerList - The list of stream consumers.
set Subscri ptionld(subscriptionld : String) : void
Set the subscription id for this context to reference.

Arguments:

e subscriptionld - The subscription id.
Stream Discovery

The streamdiscovery group contains the interfaces that define and support the stream discovery
and registration/query capability of the Phoenix architecture. The streamdiscovery interfaces are:

e StreamDiscoveryServiceConnector
e StreamDiscoveryServiceContext

e StreamDiscoveryService

e StreamDiscoveryServiceStub

e StreamDiscoveryContext

e StreamDiscoveryQueryContext

StreamDiscoveryServiceConnector

This interface extends the Stream Discovery Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
148

Public Operations

(Inherited from the Stream Discovery Service)

StreamDiscoveryServiceContext

Context for the Stream Discovery Service. This has all necessary methods for the serialization,
transport, and standup of the exact same Stream Discovery Service. It keeps a registry of
registered streams, as well as a set of expression processors for brokering stream queries.
Multiple expression processors are allowed and are chosen based on the query expression type.

Public Operations
addSt reanDi scover yCont ext (streamnl d : String, st r eanCont ext
StreanDi scoveryContext) : void
Add a stream context to those held by this service.

Arguments:

e streamld - The identifier of the stream discovery context to add to our listings.

e streamContext - The context to add to our listings.
get St reanDi scoveryContexts() : List<StreanDi scoveryContext>

Get all of the stream discovery contexts held by this service.
get St reanDi scoveryContext (streamd : String) : StreanDi scoveryCont ext

Get a single stream discovery context held by this service.

Arguments:

e streamld - The stream id referencing the context to be retrieved.
renoveSt reanDi scoveryContext (streamd : String) : StreanDi scoveryCont ext
Remove the stream discovery context referenced by the passed parameter.

Arguments:
e streamld - The stream id referencing the context to be removed.

StreamDiscoveryService

The Stream Discovery Service interface extends the Base Channel Service interface and is
responsible for maintaining a registry of stream descriptions, along with relevant connection
meta-data so someone can find out how and where to connect to them. Stream Contexts may
include fields such as what specific data types a particular stream supports or where it is
physically located, as well as a name, description, and header data for a defined stream.

Public Operations
br oker For St r eans(sessi onTr ack : Sessi onTr ack, guery

StreanDi scoveryQueryContext) : List<StreanD scoveryCont ext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
149

Broker for a set of streams that satisfy the specified constraints. This method returns a
list of matching stream contexts which may be used to interact with their associated
streams through references internal to the context.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e query - The defined criteria used to broker for matching streams.

Raised Exceptions:

e Exception - If the given query causes an error to occur.

get St reanDi scover yCont ext (sessionTrack : SessionTrack, streamid : String)
St reanDi scover yCont ext
Retrieve the context being used by the Stream to describe itself by requesting it using its
associated stream identifier.

Arguments:
e sessionTrack - The pedigree of the invokers for this method.
e streamld - The identifier of the stream context to retrieve.

Raised Exceptions:

e Exception - If the values passed or current service state causes an error to occur.

der egi st er St ream(sessi onTr ack : Sessi onTr ack, stream d : String)
St reanDi scover yCont ext

Deregister the stream from discovery operations.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e streamld - The identifier of the stream context to deregister.

Raised Exceptions:

e Exception - If the values passed or current service state causes an error to occur.
regi sterStrean(sessi onTrack Sessi onTr ack, st r eantCont ext
StreanDi scoveryContext) : void

Register the stream from discovery operations.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e streamContext - The Context object containing the description of the service to be
registered.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
150

e Exception - If the values passed or current service state causes an error to occur.

updat eSt r ean(sessi onTr ack : Sessi onTr ack, st r eanCont ext
StreanDi scoveryContext) : void

Update the given stream discovery context by cross-referencing its Id with the existing
registry.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e streamContext - The Context object containing the description of the stream to be
updated.

Raised Exceptions:
e Exception - If the values passed or current service state causes an error to occur.

StreamDiscoveryServiceStub

This interface extends the Stream Discovery Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Stream Discovery Service)

StreamDiscoveryContext

Stream Discovery Context represents a Stream Definition (As a Stream Context), but is extended
to include service stubs related to the stream so that the stream can be joined at the point of its
entry into the SOA by any discovering it.

Public Operations

get StreanBrokeri ngServi ceStub() : StreanBrokeringServiceStub

Get the stream brokering service stub associated with this stream.
set St r eanBr okeri ngSer vi ceSt ub(serviceStub : StreanBrokeringServiceStub) : void

Set the stream brokering service stub associated with this stream.

Arguments:

e serviceStub - The stream brokering service to whom is delegated the stream for
registration.

StreamDiscoveryQueryContext

A QueryContext used specifically for Stream Discovery operations. An extension of
QueryContext, and so is interchangeable in query methods, but is created here for extensions
later on.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
151

Public Operations

Stream Repository

The stream repository group contains the interfaces that provide the stream repository capability
for the Phoenix IM Services. The stream repository interfaces are:

e StreamQueryContext

e StreamQueryService

e StreamRepository

e StreamRepositoryService

e StreamRepositoryServiceConnector
e StreamRepositoryServiceContext

e StreamRepositoryServiceStub

e StreamSequenceContext

e StreamSequenceRange

StreamQueryContext
A context defining a stream query.

Public Operations

addSt reantor Query(streamid : String) : void
Add a stream for querying over to the list of those this query applies to.

Arguments:

e streamld - The stream identifier.
get StreanSequenceCont ext () : StreanSequenceCont ext

Get the stream sequence context of this stream query.
get StreanmsFor Query() : List<String>

Get the streams for querying over. Returns the list of streams that this query applies to.
removeSt r eanfor Query(streamd : String) : void

Remove a stream for querying over from the list of those this query applies to.

Arguments:

e streamld - The stream identifier.

set StreanSequenceCont ext (context : StreanSequenceContext) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
152

Set the stream sequence context of the stream query.

Arguments:

e context - The associated stream sequence context for this stream.

set StreanmsFor Query(streamds : List<String>) : void
Set the streams for querying over.

Arguments:
e streamlds - The stream identifiers.

StreamQueryService

This service extends the Base Channel Service interface and provides a retrieval capability for
persisted streams. This service permits actors to retrieve records from the underlying data store.
Using a Stream Query Context construct to describe the actual query to be executed allows the
architecture to mandate a small set of required query attributes while leaving the door wide open
for individual implementations of the IM Services to include additional attributes to tune the
query processing of each stream query service more towards their respective underlying data
stores. The query service will support synchronous and asynchronous query execution. For
synchronous queries the execute query method provided will return a value representing the
number of matching records found. This same method will return nothing when used
asynchronously. In all cases the result set of the query will be returned to the consumer via
channels.

Typical Use:
This service serves as a query interface for the Stream Repository Service.

Public Operations

cancel Query(sessionTrack : SessionTrack, queryld : String) : bool ean

Cancel a currently executing query. Executing queries are defined as queries that have
any processors cycles associated with them, i.e. a query is not done executing until all
results (if any) are delivered to the Dissemination Service for delivery. Returns True if the
query was canceled, False otherwise.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e queryld - The unique identifier for the query to be canceled.

Raised Exceptions:

e Exception
execut eQuery(sessionTrack : SessionTrack, queryCix : StreamueryContext) : int

This method processes the specified query to satisfy some inquisitors request for data.
Actual result sets are delivered via a channel set up between the consumer and the query
service. When this method is invoked synchronously, the return value signals the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
153

inquisitor the number of matching records that were found or that an error occurred while
processing their query. A value of zero or greater is the number of matching records.
Values less than zero are reserved for possible error flags. When used asynchronously,
this method does not return a value. Returns a flag that signals the inquisitor the number
of matching records that were found or that an error occurred while processing their

query.
Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e queryCtx - The Stream Query Context object that describes what information the
inquisitor is searching for.

Raised Exceptions:

e Exception

get Count s(sessionTrack : SessionTrack, streamlds : List<String>) : Mp<String,
| nt eger >

Retrieves the number of records in the repository for the specified streams. This method
returns a Map of key-value pairs that define how many records there are for each
specified stream. Returns the number of records in the repository for the specified types.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e streamlds - The listing of stream identifiers to retrieve the count(s) for.

Raised Exceptions:

e Exception

get Mat chi ngSequences(sessi onTr ack : Sessi onTr ack, streanl d : String,
sequenceCont ext : StreanBequenceContext) : List<Long>

Retrieves the sequence ids of the matching items in the repository for the specified
streams. This method returns a list of longs which are a chronologically ordered list of the
sequence identifiers matching the passed query. Returns the sequence identifiers of the
records in the repository matching the passed query.

Arguments:
e sessionTrack - The pedigree of the invokers for this method.
e streamld - The stream identifier to narrow the focus of the query.
e sequenceContext - The query to perform over the requested stream.

Raised Exceptions:

e Exception

IistActiveQuerylds(sessionTrack : SessionTrack) : List<String>

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
154

List the unique identifiers for the currently executing queries. Executing queries are
defined as queries that have any processors cycles associated with them, i.e. a query is
not done executing until all results (if any) are delivered to the consumer or a proxy
service for delivery. Returns the list of unique identifiers for the currently executing
queries.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:
e Exception

StreamRepository

An interface for stream repositories that will allow a single RepositoryService to support multiple
disparate stream repository implementation technologies.

Public Operations

addSt r eanSupport (streanCont ext : StreanContext) : void
Add the given stream to the list of supported streams for this repository.

Arguments:

e streamContext - The context describing the stream to be supported.

Raised Exceptions:

e Exception

cancel Query(queryld : String) : bool ean
Cancel the identified query. Returns True if canceled, False if not.

Arguments:

e queryld - The identifier for the query to be canceled.

Raised Exceptions:

e Exception
cl oseRepository() : void

Close the repository or its connection.

Raised Exceptions:

e Exception
del ete(query : StreanfueryContext) : int
Delete all records that match the predicate provided in the given query context object.

Returns the number of information instances deleted from the repository.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
155

Arguments:

e query - The context that contains the query to be executed and whose matching
records will be deleted.

Raised Exceptions:

e Exception
del eteStream(streamd : String) : void
Delete a stream from the repository.

Arguments:

e streamld - The stream identifier.

Raised Exceptions:

e Exception

execut eQuery(query : StreanmueryContext) : int

Execute a query against the stream repository. Returns the number of results found that
match the query, or -1 to indicate asynchronous query mode.

Arguments:

e query - The context that contains the query to be executed.

Raised Exceptions:

e Exception

getCount (streamd : String) : int

Retrieve the number of instances stored in the stream repository for the identified
stream. Returns a Map with stream id as keys and counts as values.

Arguments:

e streamld - The stream id to retrieve the count for.

Raised Exceptions:

e Exception

get Mat chi ngSequences(streamid : String, sequenceContext : StreanBSequenceContext)
Li st <Long>
Retrieve the sequences for the given parameters. Returns the list of matching sequence
identifiers.

Arguments:

e streamld - The stream identifier.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
156

e sequenceContext - The context that defines what sequences to search for within
the stream.

Raised Exceptions:

e Exception
getU D() : String
Retrieve the unique identifier for the Stream Repository implementation.

Raised Exceptions:

e Exception
insert(insertionList : List<T>) : Object

Insert a set of streaming data into the stream repository. Returns an Object that
describes some result of the insert operation or null if nothing is returned.

Arguments:

e insertionList - The array of data to be inserted.

Raised Exceptions:

e Exception
i sStreanBupported(streamd : String) : bool ean

Check if the identified stream is supported by this repository. Returns True if this stream
is being supported by this repository, False otherwise.

Arguments:

e streamld - The stream identifier.

Raised Exceptions:

e Exception
listActiveQuerylds() : List<String>

List the identifiers for the set of currently active queries. An active query is defined as
any query that has processor cycles associated with it, i.e. a query is not finished
‘executing’ until all results have been delivered from the repository implementation to the
output buffer to the dissemination service. Returns the list of active query identifiers.

Raised Exceptions:

e Exception
openRepository() : void

Initialize the connection to the repository and make the class instance ready for use in all
respects.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
157

e Exception
renoveSt reanSupport (streamd : String) : void
Remove the identified stream from the list of streams supported by this repository.

Arguments:

e streamld - The stream identifier.

Raised Exceptions:
e Exception
StreamRepositoryService

The Stream Repository Service extends the Stream Query Service interface and inserts frames
into its associated data store(s). Although these interfaces are consistent with the general
repository service, some methods are not functional, as the stream repository service is based
on frames rather than information, which means that a) there is no type associated with the
data, although it is correlated with the type associated with the stream context, b) there are no
contexts for the frames, and c) frames are based around streams, which means that the
repository should have streams as representative of the types of data, encapsulating methods
which can retrieve the schema definitions for the stream, metadata content, and payload
content. There is no actual insert frames method defined as part of the service API. Instead, the
Repository Service receives frames via channels, which it reads internally, making insertion an
internal process. This decision was made to ensure the physical separation of control versus data
interactions. The frame storage interface is an extension of the frame retrieval interface. This
follows the assumption that if you can write to a section of disk then you are implicitly able to
read from that section as well, i.e. if you can write to the data store, you should be implicitly
able to read from the data store as well. This service also provides the ability to delete records
from the database. The Phoenix architecture defines two types of data stores: repositories and
archives. Repositories are low-latency high-access data stores that should support higher data
read and write rates. Archives are expected to be higher latency, low access data stores that
may not be able to support high data rates but can store much more data than repositories. A
possible implementation strategy would be to store recent data in a repository while aging data
would be moved to an archive. This service may be implemented in such a way that it can be
used as a wrapper for existing legacy data stores.

Public Operations

del et eRecor ds(sessi onTrack : Sessi onTr ack, quer ySt r eamQuer yCont ext
StreamQueryContext) : int

Delete records that match the provided query. Any consumer channels defined for the
provided query are ignored. There are several possibilities that arise from using a
QueryContext for this operation: If a predicate and streams are both specified the
predicate is applied to only the specified streams and the matching records are deleted, If
a predicate is specified but streams are not the predicate is applied to all supported
streams and the matching records are deleted,If no predicate is provided but a set of
streams are specified all records of the specified streams are deleted, If neither a
predicate not a set of streams are specified nothing happens and an exception is thrown.
This is done because we specifically want to lock out the possibility of the default case
being to delete all records for all supported types.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
158

Arguments:

e sessionTrack - The pedigree of the invokers for this method.

e queryStreamQueryContext - The context that defines the subset of records to be
deleted.

Raised Exceptions:

e Exception
del et eStrean(sessi onTrack : SessionTrack, stream dentifier : String) : void

This method will tell the service to permanently remove the data store for the identified
stream. This method should fail if the repository is currently storing data for the specified
stream (i.e. “end” method must be called first, before a “remove” call is executed).

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e streamldentifier - The id of the stream to remove the resident data store for.

Raised Exceptions:

e Exception

i sStreanBupported(sessionTrack : SessionTrack, streamidentifier : String)
bool ean

This method will check if the service supports storing the identified stream. This is a
check to see if the stream has been registered with the repository via the
startStoringDataForStream method. This method returns true if the stream is supported
by this service, false if not.

Arguments:

e sessionTrack - The pedigree of the invokers for this method.
e streamldentifier - The identifier of the stream to determine support for.

Raised Exceptions:

e Exception

start StreanSupport (sessionTrack : SessionTrack, streamContext : StreanmContext)
voi d

This method will register tell the service to begin storing streams of the identified type. If
the stream does not have a location (XML container, database table, etc) to store the
data in, one will be created. If a location already exists, that existing location will be
appended to. If the desired functionality is to create a new store for an already registered
stream, an actor should call the archive method, which will move the existing data store
contents to another location.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
159

e sessionTrack - The pedigree of the invokers for this method.
e streamContext - The context that describes the stream to begin storing.

Raised Exceptions:

e Exception
st opSt r eanSupport (sessionTrack : SessionTrack, streamidentifier : String) : void

This method will tell the service to stop storing streams of the identified type. Any further
data for this stream that are received will be ignored (dropped out of memory at
processing time).

Arguments:
e sessionTrack - The pedigree of the invokers for this method.

e streamldentifier - The identifier of the stream to stop storing data for.

Raised Exceptions:
e Exception
StreamRepositoryServiceConnector

This interface extends the Stream Repository Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Stream Repository Service)

StreamRepositoryServiceContext
A context for the stream repository service.

Public Operations

get Def aul t Tabl eType() : mil.af.rl.phoenix.repository. Tabl eType

Retrieve the flag defining the default type of persistence to perform when inserting data
into the wunderlying data store. Possible values are defined in the
Phoenix.Contexts.Services.EnumTypes.TableType enumeration.

get MaxRepositorySi ze() : long
Retrieve the theoretical maximum size for the data store that the associated parent
Repository Service is connected to. The actual unit of measure is left to the
implementation designers to determine.

get SpaceRemai ning() : |ong

Retrieve the actual space remaining on the hard drive(s) that the underlying data store is
being hosted on.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
160

get SupportingStreanRepositories(streanid : String) : List<StreanRepository>

Retrieve the repositories supporting the identified stream. Returns the list of stream
repositories.

Arguments:

e streamld - The stream identifier.

Raised Exceptions:

e Exception

i sStreanBupported(streanid : String) : bool ean

Check if the identified stream is currently being supported. Returns True if the stream is
being supported, False otherwise.

Arguments:

e streamld - The stream identifier.

Raised Exceptions:

e Exception
start StreanSupport (streanContext : StreanContext) : StreanRepository

Start supporting the identified stream. Returns the stream repository that will be used to
support the stream.

Arguments:

e streamContext - The context describing the stream to begin supporting.

Raised Exceptions:

e Exception
st opStreanSupport(streamd : String) : void
Stop supporting the identified stream.

Arguments:

e streamld - The stream identifier.

Raised Exceptions:
e Exception

StreamRepositoryServiceStub

This interface extends the Stream Repository Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
161

(Inherited from the Stream Repository Service)

StreamSequenceContext
Class description.

Public Operations

get St r eanSegnent Quer yRange() : StreanfSequenceRange

Get the stream segment query range for the query to search by using the required
sequence id component. Returns the stream segment query range.

i sSequenceRangeDefi ned() : bool ean

Check if the sequence range is defined or not. Retrurns True if the sequence range is
constrained.

set FrameQuer yRange(st r eanfuer yRange : StreanBSequenceRange) : void

Set the stream segment query range for the query to search. Constrains the range for
bounding.

Arguments:
e streamQueryRange - The stream query range.

StreamSequenceRange
Defines the sequenceld range for a stream segment query.

Public Operations

get EndRangeSequencel dentifier() : |ong
Get the sequence id to end the stream query over. Returns the sequence id to stop
processing query.

get St art RangeSequencel dentifier() : Ilong
Get the sequence id to begin the stream query over. Returns the sequence id to begin
query.

i sRangeEndDef i ned() : bool ean
The end range may be undefined, in which case the query should be over all specified

streams beginning at the start range, if defined. Returns True or false, is the query
constrained by a sequence id end to the range.

i sRangeStart Defined() : bool ean

The start range may be undefined, in which case the query should be over all specified
streams until the end range, if defined. Returns True or false, is the query constrained by
a sequence id start of the range.

set EndRangeSequencel denti fier(sequenceld : long) : void
Set the sequence id to end the stream query over.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
162

sequenceld - Sequence id to stop processing query.

set St art RangeSequencel dentifi er(sequenceld : long) : void

Set the sequence id to begin the stream query over.

Arguments:

Reference

Terms

sequenceld - Sequence id to begin query.

The table below gives a brief description of important terms used in this document.

Term

Actor

Archive

Client

Consumer

Distributed

Endpoint

Information

Information

Architecture

Information

Meaning

A generic entity that utilizes an IM Service in some capacity. There are several
identified types of actors: consumers, producers, and inquisitors. An actor may
represent either a service or a user of a service.

Archives are expected to be higher latency, low access data stores that may not
be able to support high data rates but can store much more data than
repositories.

An actor that is an application, system, or service that accesses another service.
An actor that receives information.

Deals with hardware and software systems containing more than one processing
element or storage element, concurrent processes, or multiple programs, running
under a loosely or tightly controlled regime.

In Service-oriented architecture, an endpoint is the entry point to a service, a
process, or a queue or topic destination. The abilty to detect one or more Point of
Presence/Entry/Connection to the information management system.

The basic building block of data containing a minimum set of data including an
information type identifier, a payload, and metadata. Information may contain
other data in addition to the specified minimal set.

The structural design of shared information environments (from Information
Architecture for the World Wide Web: Designing Large-Scale Web Sites by Peter

Morville and Louis Rosenfeld).

An established category of information, the descriptor for which contains,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
163

Type minimally, a description of the payload and metadata structures and a unique
identifier.

Inquisitor A type of consumer that queries a service to retrieve information.

Metadata A structured set of data that describes an instance of information. Is sometimes
called Metainformation and is "data about data", of any sort in any media. An item
of metadata may describe an individual datum, or content item, or a collection of
data including multiple content items. Metadata is used to facilitate the
understanding, characteristics, and management usage of data.

Payload The actual unmodified data of interest.

Expression A verb phrase template that describes a property of objects, or a relationship
among objects represented by the variables.

Producer An actor that submits information to a service.

Schema A conception of what is common to all members of a class; a general or essential
type or form. (New Oxford American Dictionary)

Service A mechanism to enable access to one or more capabilities, where the access is
provided using a prescribed interface and is exercised consistent with constraints
and policies as specified by the service description (Organization for the
Advancement of Structured Information Standards).

Acronyms

Acronym Definition

AFRL Air Force Research Laboratory
ATO Air Tasking Order

Cc2 Command and Control

col Community of Interest

CoT Cursor-on-Target

DoD Department of Defense

FORCH Filter Orchestration

FOS

Filter Orchestration Service

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
164

GIG Global Information Grid

IM Information Management
IMS Information Management Service(s)
1P Internet Protocol

JBI Joint Battlespace Infosphere
QoS Quality of Service

RMI Remote Method Invocation
SAB Scientific Advisory Board
SOA Service-Oriented Architecture
TCP Transmission Control Protocol
UDP User Datagram Protocol

UML Unified Modeling Language
URI Uniform Resource Identifier
XML Extensible Markup Language

XPath XML Path Language

XSD XML Schema Document

Interface Hierarchies

This section shows the parent and child relationships for each of the components of the Phoenix
architecture that are specified in Section 3. For example, all of the service interfaces defined in
Section 3.2 are extensions (children) of the BaseService interface, some directly, and some as
children of children. In Section 3 all interfaces within the Phoenix architecture are presented in
alphabetical order while in this section only those interfaces that are part of a parent-child
hierarchy are shown.

BaseContext

----ActionContext

----ActorContext
----AuthorizationContext
----ChannelContext

———————— InformationChannelContext
———————— InputChannelContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
165

----ConnectionContext

———————— ConnectorContext

———————— StubContext
----EndPointContext

----EventContext
----EventDescriptorContext
----EventNotificationRequestContext
----ExpressionContext

----FilterContext

----FilterChainContext
----InformationContext
--—-InformationQueryContext
--—-InformationTypeContext
----ProtocolContext

———————— TransportProtocolContext
----ServiceBrokeringQueryContext
----ServiceContext

———————— ClientRuntimeServiceContext
-------- ConnectionServiceContext
-------- InformationServiceContext
———————————— DisseminationServiceContext
———————————— EventNotificationServiceContext
———————————— InformationBrokeringServiceContext
———————————— QueryServiceContext
———————————————— RepositoryServiceContext
———————————— SubmissionServiceContext
———————— ServiceBrokeringServiceContext
-------- SessionManagementServiceContext
———————— StreamBrokeringServiceContext
———————— StreamDiscoveryServiceContext
———————— SubscriptionServiceContext
----SessionContext
----SubscriptionContext

ContextContainer
----BaseChannel
----BaseService
----BaseServiceConnector
----BaseServiceStub
----Event

----Filter

----FilterChain
----Information

BaseChannel

----InputChannel

________ BytelnputChannel

-------- EventlnputChannel
-------- FramelnputChannel
-------- InformationlnputChannel*
----OutputChannel

________ ByteOutputChannel
-------- EventOutputChannel
———————— FrameOutputChannel
———————— InformationOutputChannel™

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
166

* Dual Inheritance

InformationChannel
----InformationlnputChannel*
----InformationOutputChannel*

* Dual Inheritance

BaseService
----BasePersistentService
----BaseChannelService

-------- AuthorizationService

———————— ClientRuntimeService
-------- ConnectionService

-------- DisseminationService
-------- EventNotificationService
-------- FilterManagementService
———————— InformationBrokeringService
-------- InformationDiscoveryService
———————— InformationTypeManagementService
———————— QueryService

____________ RepositoryService
-------- ServiceBrokeringService
-------- SessionManagementService
-------- StreamBrokeringService
-------- StreamDiscoveryService
-------- SubmissionService

-------- SubscriptionService

BaseServiceConnector
----BaseChannelServiceConnector

-------- AuthorizationServiceConnector

———————— ClientRuntimeServiceConnector
-------- ConnectionServiceConnector

-------- DisseminationServiceConnector
———————— EventNotificationServiceConnector
———————— FilterManagementServiceConnector
———————— InformationBrokeringServiceConnector
———————— InformationDiscoveryServiceConnector
———————— InformationTypeManagementServiceConnector
-------- QueryServiceConnector

-------- RepositoryServiceConnector

-------- ServiceBrokeringServiceConnector
———————— SessionManagementServiceConnector
———————— StreamBrokeringServiceConnector
———————— StreamDiscoveryServiceConnector
———————— SubmissionServiceConnector

———————— SubscriptionServiceConnector

BaseServiceStub
----BaseChannelServiceStub
———————— AuthorizationServiceStub
———————— ClientRuntimeServiceStub
———————— ConnectionServiceStub

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
167

-------- DisseminationServiceStub
-------- EventNotificationServiceStub
———————— FilterManagementServiceStub
———————— InformationBrokeringServiceStub
———————— InformationDiscoveryServiceStub
———————— InformationTypeManagementServiceStub
-------- QueryServiceStub

-------- RepositoryServiceStub

-------- ServiceBrokeringServiceStub
-------- SessionManagementServiceStub
-------- StreamBrokeringServiceStub
-------- StreamDiscoveryServiceStub
-------- SubmissionServiceStub

———————— SubscriptionServiceStub

Event

----ExceptionEvent
----InformationEvent

———————— InformationDeliveryEvent
--—-InformationTypeEvent

Package Structure

This section depicts the package structure for the Phoenix architecture. Each package listed here
corresponds to a similarly named section within the architecture specification section of this
document where the interfaces and classes that comprise these packages are listed and
described in detail.

— af
________ rl
____________ phoenix
________________ channel
________________ client
________________ connection
________________ core
________________ dissemination
________________ event
________________ eventnotification
________________ expression
________________ filter
________________ frame
________________ information
________________ informationbrokering
________________ informationdiscovery
________________ informationtype
________________ query
________________ repository
________________ security
________________ servicebrokering
________________ session
________________ sessionmanagement
________________ stream
________________ streambrokering

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
168

_________ streamdiscovery
_________ submission
————————— subscription

How To...

How To...Submit Information

Required Phoenix IM Services :

SubmissionService

Optional Phoenix IM Services :

InformationTypeManagementService - may be used by the producer or
SubmissionService to verify that an information type exists or to validate instances of
information.

ServiceBrokeringService - may be used by the producer and/or the SubmissionService to
obtain control stubs for other Phoenix IM services.

Workflow

1.

The producer obtains a control stub instance for the SubmissionService.
- This stub can be provided by a runtime library or brokered for via the
ServiceBrokeringService.

/* This exanpl e assunes an inplenmentation-specific control stub is provided
by a runtine library. */
Submi ssi onServi ceStub serviceStub = new MySubmi ssi onServi ceSt ubl npl () ;

The consumer must first activate and connect the stub to its associated service before it
can be utilized.
- This is done by calling the "activate()" and "connect()" methods on the stub. Activating
a stub initializes its state within the local address space of the consumer. Connecting the
stub to the service establishes the control channel between the consumer and the
InformationBrokeringService.

/* activate the control stub. */
serviceStub. activate(false);

/* Connect the stub to its associated service. This exanple assunes the
absence of any SessionManagenent Service from the collection of Phoenix IM
services being utilized. */

servi ceSt ub. connect (nul I);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
169

Create the Channel Context that describes the channel being requisitioned by the
producer.

- This context may be contain specific configuration settings or a subset. If a subset then
the rest of the channel settings will be determined by the service.

/* Create a Channel Context that wll describe the CQutput Channel to be
created. */
Channel Cont ext channel Cont ext = new MyChannel Cont ext () ;

/!l Set the |ocation of the Subni ssion Service the channel will connect to.
EndPoi nt Cont ext endPoi nt Cont ext = new MyEndPoi nt Cont ext () ;

endPoi nt Cont ext . set Host Addr ess(155. 244. 60. 54) ;

endPoi nt Cont ext . set Host Port (1234);

channel Cont ext . set EndPoi nt Cont ext (endPoi nt Cont ext) ;

Tr anspor t Prot ocol Cont ext transport Cont ext = new
My Transport Prot ocol Cont ext () ;
transport Cont ext. set Protocol I d("tcp");

Pr ot ocol Cont ext applicati onContext = new MyProt ocol Context();
appl i cationContext.setProtocol ld("information");

channel Cont ext . set Appl i cati onPr ot ocol Cont ext (appl i cati onCont ext);
channel Cont ext . set Transport Pr ot ocol Cont ext (transport Cont ext);

Create an instance of an OutputChannel for the selected SubmissionService.
- The OutputChannel created can be a ByteOutputChannel, InformationOutputChannel, or
an implementation-specific OutputChannel. OutputChannels are created by the actor
connecting to the SubmissionService.

/* Request that the Submi ssion Service double check the output channel
context to insure that the created channel will natch one of the service's
avai l abl e i nput channels. */

channel Cont ext =
servi ceSt ub. confi gur eAct or Qut put Channel Cont ext (channel Cont ext) ;

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
170

/* End of Channel Context configuration. */

/* Some inplementation-specific nechanismthen creates the channel fromthe

channel context. In the case of this exanple a channel factory exists for
thi s purpose. */

I nf or mat i onCQut put Channel i oc = (I nfor mati onQut put Channel)
Channel Fact oryl npl . cr eat eQut put Channel (nul |, channel Cont ext);

Connect the OutputChannel to the SubmissionService.

- This is done by calling the "connect()" method on the created OutputChannel. This
operation will connect the OutputChannel to a corresponding SubmissionService
InputChannel. the connect method takes a Session Track object as a parameter. This
example assumes we have such an object already created and populated.

/* Connect the Qutput Channel to the Submi ssion Service's Input Channel. */
i oc. connect (nySessi onTr ack) ;

Write information to the OutputChannel.
- This is done by calling one of the "write()" methods provided by the OutputChannel.
This method invocation realizes the concept of submitting information. If using a
ByteOutputChannel or an implementation-specific channel, either the SubmissionService
or a channel filter is responsible for converting the received data to Phoenix's defined
notion of information, if conversion is required.

/* This exanple assunes you have one or nore instances of Information ready
to be submitted. */
Information information = new Myl nformation();

Li st<Informati on> i nformationList= new ArrayLi st<Information>();
i nformationLi st.add(information);

/* Submit information by invoking one of the wite nethods on the Qutput
Channel . */
/* Option 1. Synchronous singular wite. */

ioc.write(information);

/* Option 2: Synchronous multiple wite. */
ioc.wite(informationList);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
171

/* Option 1. Asynchronous singular wite. */
ioc.witeAsync(information);

How To...Subscribe to Information

Required Phoenix IM Services :

e DisseminationService
e InformationBrokeringService
e SubscriptionService

e SubmissionService
Optional Phoenix IM Services :

e InformationTypeManagementService - may be used by the consumer or the required
services to verify that an information type exists or to validate instances of information.

e ServiceBrokeringService - may be used by the consumer and/or the required services to
obtain control stubs for other Phoenix IM services.

e SessionManagementService - can be used to create actor sessions for use when invoking
methods on the Phoenix IM service interfaces. Alternately, a service's implementation
could accept a null value for actor sessions.

Workflow

1. The consumer obtains a control stub instance for the Subscription Service.
- This binding can be provided by a runtime library or brokered for via the Service
Brokering Service.

/* This exanpl e assunmes an inplenmentation-specific control stub is provided
by a runtime library using static configuration. */
Subscri ptionServiceStub serviceStub = new MySubscri ptionServiceStub();

2. The consumer must first activate and connect the stub to its associated service before it
can be utilized.
- This is done by calling the "activate()" and "connect()" methods on the stub. Activating
a stub initializes its state within the local address space of the consumer. Connecting the
stub to the service establishes the control channel between the consumer and the
Subscription Service.

/* activate the control stub. */
serviceStub. acti vate(fal se);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
172

/* Connect the stub to its associated service. This exanple assunes the
absence of any Session Managenent Service fromthe collection of Phoenix IM
services being utilized, hence the "null' session track paraneter. */

servi ceSt ub. connect (nul l);

Create the Channel Context that describes the channel to be used for delivering matching
information.

- This context may be contain specific configuration settings or a subset. If a subset then
the rest of the channel settings will be determined by the service.

/* Create a Channel Context that wll describe the Input Channel to be
created. */
Channel Cont ext channel Cont ext = new MyChannel Cont ext () ;

/1l Set the location of the channel that the Dissem nation Service wll
connect to.
EndPoi nt Cont ext endPoi nt Cont ext = new MyEndPoi nt Cont ext () ;

endPoi nt Cont ext . set Host Addr ess(155. 244. 60. 69) ;

endPoi nt Cont ext . set Host Port (9786) ;

channel Cont ext . set EndPoi nt Cont ext (endPoi nt Cont ext) ;

Transport Prot ocol Cont ext transport Cont ext = new
MyTr ansport Prot ocol Cont ext () ;
transport Cont ext. set Protocol 1 d("tcp");

Pr ot ocol Cont ext applicati onContext = new MyProtocol Context();
appl i cati onCont ext.setProtocol I d("information");

channel Cont ext . set Appl i cati onPr ot ocol Cont ext (appl i cati onCont ext);
channel Cont ext . set Transport Pr ot ocol Cont ext (transport Cont ext);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
173

Setup the InformationlnputChannel for receiving results.
- This context may be contain specific configuration settings or a subset. If a subset then
the rest of the channel settings will be determined by the service.

/* Sonme inplenentation-specific mechanism creates the channel from the

channel context. In this exanple we use an inplenmentation-specific channel
factory. */

I nf or mat i onl nput Channel i oc = (I nfor mati onl nput Channel)
Channel Fact oryl npl . cr eat el nput Channel (nul I, channel Cont ext);

/* Instruct the Input Channel to listen for connection attenpts from Qutput
Channels. This exanple assumes no Session Mnagenent Service, hence the
"null' session track paranmeter. */

iic.open(null);

Construct and populate the Context describing the subscription to be registered.
- Subscriptions are registered through the use of SubscriptionContext instances.

/* Create a new SubscriptionContext and populate it with the required and
any optional attributes. */

Subscri pti onCont ext subscri pti onToBeRegi st er ed
MySubscri pti onCont ext () ;

new

/* (REQUI RED) Create and set the expression for the subscription. */
Expressi onCont ext expressi onCont ext = new Expressi onCont ext () ;

expressi onCont ext . set Expression("/us/af/aircraft[@ail No=" VI XENO3' 1");
expressi onCont ext . set Expressi onType(" XPat h") ;

subscri pti onToBeRegi st er ed. set Expr essi on(expr essi onCont ext) ;

/* (REQUI RED) Set the EndPointContext for the consuner (at |east one) of
the brokered information that matches this subscription. In this exanple we
add the context that describes the previously created input channel. */
subscri pti onToBeRegi st er ed. addConsuner Channel (channel Cont ext) ;

/* (REQUI RED) Set the brokering result type. Either the registrant for this
subscription wi shes to have information that matches the subscription test
forwarded to the associated consumers via some Phoenix Dissem nation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
174

Service or the registrant wi shes to have consuner hit lists for brokered
informati on forwarded to the associated consuners via some Phoenix Event
Notification Service. */

subscri pti onToBeRegi st er ed. set Brokeri ngResul t Type(Brokeri ngResul t Type. | NFOR
MATI ON) ;

/* (OPTIONAL) Set the time, in ms, for that the consuner(s) are willing to
wait for the first result that matches this subscription. If this tine
expires without a match being found, the subscription will automatically be
unregi stered. */

subscri pti onToBeRegi st er ed. set Fi r st Mat chFoundTi nme(60000) ;

/* (OPTIONAL) Set one or nore information type identifiers for the
information types that this subscription should be applied to. If not set,
the subscription will be applied to all types known to the registering
I nf or mat i onBr okeri ngService(s). */

subscri pti onToBeRegi st er ed. addl nf or mati onTypeNanme("m | .af.aircraft");

Register the subscription with the Subscription Service.
- The consumer then registers the subscription by submitting it to the Subscription
Service.

/* Submit the subscription for registration by providing its Context object
to the Subscription Service. This exanple assunes the absence of any
Sessi on Managenent Service fromthe collection of Phoenix |IMservices being
utilized. */

Li st <Subscri pti onCont ext > subscri pti onLi st = new
Li nkedLi st <Subscri pti onCont ext >();

subscri ptionLi st.add(subscripti onToBeRegi st ered);

servi ceSt ub. regi st er Expressi ons(null, subscriptionList);

Use the previously created input channel to read information that matched the registered
subscription.

- This may be done using any of the synchronous or asynchronous read methods from
the input channel interface.

/* Invoke one of the read nethods from the Input Channel interface or the
speci fic channel interface. */
/* Option 1: The asynchronous read fromthe input channel interface. */

iic.readAsync(new I nputHandl er<information>());

/* Option 2: The singular, synchronous blocking read from the information
i nput channel interface. */

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
175

Information information = iic.read();

/* Option 3: The multiple, synchronous blocking read from the information

i nput channel interface. This exanple will read 5 information instances are
return themall at once in a List construct. */
Li st<Information> informationList = iic.read(5);

How To...Store Information

Required Phoenix IM Services :

e Repository Service

e Submission Service
Optional Phoenix IM Services :

e InformationTypeManagementService - may be used by the producer or required services
to verify that an information type exists or to validate instances of information.

e ServiceBrokeringService - may be used by the producer and/or the required services to
obtain bindings for other Phoenix IM services.

Workflow 1 : Submission Service is Configured to Store all Submitted Information

1. The information producer submits information.
- This is accomplished per the instructions given in the How To...Submit Information
section.

2. The Submission Service forwards the Information to the Repository Service.
- This is accomplished via the internal information channels the services established
between themselves. For more details, please see Sequence Diagram 0008 Information
Storage (Persistence).

Workflow 2 : Producer Flags Individual Information Instances for Storage

1. The producer flags an information instance for storage.
- This is done by setting the corresponding flag within the InformationContext that
describes the instance of information. This is not required and, based on the
implementation, may or may not impact whether or not this information instance is
stored in a repository.

/* This exanple assunes you have one or nore instances of Information ready
to be submitted. */
Information information = new Myl nformation();

/* Retrieve the Information Context for the information instance to be
stored. */

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
176

| nf or mat i onCont ext i nf or mat i onCont ext =
i nformati on. getl nfornmati onCont ext();

/* Set the presistence flag on the Context. This exanple assunes that the
value "1' tells the Subm ssion Service to forward this Information instance
for storage. */

i nformati onCont ext . set Persi stenceFl ag(1);

/* Set the Context for the instance of information. */
i nformati on. set Cont ext (i nformati onCont ext);

2. The information producer submits information.
- This is accomplished per the instructions given in the How To...Submit Information
section. For this workflow the Information instance referenced in the information
submission workflow and the information instance constructed above and flagged for
storage are one and the same.

3. The Submission Service forwards the information instance to the Repository Service.
- This is accomplished via the internal information channels the services established
between themselves. For more details, please see Sequence Diagram 0008 Information
Storage (Persistence). The logic to determine whether or not to store an information
instance may or may not utilize the aforementioned persistence flag from the Information
Context.

How To...Query for Information

Required Phoenix IM Services :
e Query Service
Optional Phoenix IM Services :

e InformationTypeManagementService - may be used by the inquisitor or the Query
Service to verify that an information type exists or to validate retrieved instances of
information.

e ServiceBrokeringService - may be used by the inquisitor and/or the Query Service to
obtain control stubs for other Phoenix IM services.

e SessionManagementService - can be used to create actor sessions for use when invoking

methods on the Phoenix IM service interfaces. Alternately, a service's implementation
could accept a null value for actor sessions.

Workflow

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
177

The inquisitor obtains a control stub instance for the Query Service.
- This binding can be provided by a runtime library or brokered for via the
ServiceBrokeringService.

/* This exanpl e assunmes an inplenentation-specific control stub is provided
by a runtinme library. */

QueryServi ceSt ub control Stub = (QueryServi ceSt ub)
servi ceBi ndi ng. get Control Stub();

The inquisitor must first activate and connect the stub to its associated service before it
can be utilized.
- This is done by calling the "activate()" and "connect()" methods on the stub. Activating
a stub initializes its state within the local address space of the inquisitor. Connecting the
stub to the service establishes the control channel between the inquisitor and the Query
Service.

/* activate the control stub. */
control Stub. activate(fal se);

/* Connect the stub to its associated service. This exanple assunmes the
absence of any SessionManagenent Service from the collection of Phoenix IM
services being utilized. */

control Stub. connect (null);

Create the Channel Context that describes the channel being requisitioned by the
inquisitor.

- This context may be contain specific configuration settings or a subset. If a subset then
the rest of the channel settings will be determined by the service.

/* Create a Channel Context that w |l describe the I|nput Channel to be
created. */
Channel Cont ext channel Cont ext = new MyChannel Cont ext () ;

/!l Set the location of the actor channel that the D ssem nation Service
wi Il connect to.
EndPoi nt Cont ext endPoi nt Cont ext = new MyEndPoi nt Cont ext () ;

endPoi nt Cont ext . set Host Addr ess(155. 244. 60. 54) ;

endPoi nt Cont ext . set Host Port (4567) ;

channel Cont ext . set EndPoi nt Cont ext (endPoi nt Cont ext) ;

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
178

Transport Prot ocol Cont ext transport Cont ext = new
MyTr ansport Prot ocol Cont ext () ;
transport Cont ext. set Protocol Id("tcp");

Pr ot ocol Cont ext applicati onContext = new MyProtocol Context();
appl i cati onCont ext.setProtocol I d("information");

channel Cont ext . set Appl i cati onPr ot ocol Cont ext (appl i cati onCont ext);
channel Cont ext . set Transport Pr ot ocol Cont ext (transport Cont ext);

Setup the Information Input Channel for receiving results.
- The Input Channel will be used to receive the results of the submitted query. The Query
Service is responsible for interfacing with one or more Dissemination Services to create
the associated Output Channel.

/* End of Channel Context configuration. */

/* Some inplementation-specific nechanismthen creates the channel fromthe
channel context. */

I nf or mat i onl nput Channel i oc = (I nf or mati onl nput Channel)
Channel Fact oryl npl . cr eat el nput Channel (nul I, channel Cont ext);

/* Instruct the Input Channel to listen for connection attenpts from Qut put
Channel s. */
iic.accept();

Construct the query to be submitted.
- This is done via the InformationQueryContext interface.

/* Create and popul ate a new | nformati onQueryCont ext instance. */
I nf or mat i onQuer yCont ext queryToSubnmit = new | nformati onQueryContext();

/* (REQUIRED) Create and set the expression for the query. */
Expressi onCont ext expressi onCont ext = new Expressi onContext () ;

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
179

expressi onCont ext . set Expression("/us/af/aircraft[@ail No="VI XENO3']");
expressi onCont ext . set Expressi onType(" XPat h");

/* (REQUI RED) Add the expression test to the query. */
quer yToSubmi t. addExpr essi on(expr essi onCont ext) ;

/* (REQUI RED) Add a Channel Context that describes the consumer channel. */
qguer yToSubmi t . addConsuner Channel (channel Cont ext) ;

/* (OPTIONAL) Set the tine, in ns, the inquisitor is willing to wait for
the submtted query to returns its first result. */
queryToSubmni t. set Fi rst Resul t Ret ur nedTi ne(60000) ;

/* (OPTIONAL) Set the time, in nms, the inquisitor is willing to wait for
the entire result set for the submtted query. */
queryToSubni t. set Al | Resul t sRet ur nedTi me(300000) ;

/* (OPTIONAL) Set one or nore information types, by identifier, for this
query to be executed agai nst */
queryToSubmi t. addl nformati onTypeNanme("nil.af.aircraft");

/* (OPTIONAL) Set the execution node flag to notify the Query Service of
whether or not to return the result set size before sending any results
over the information channel. This exanple assunmes that the value '1'
requires that the Query Service return the result set size. */

gueryToSubmi t. set Executi onModeFl ag(1);

Submit the query for execution.
- This is done by invoking the "executeQuery()" method on the Query Service. The Query
Service will setup the Output Channel for delivering results, execute the query against
the data store(s), and return the result set size, if required.

/* Submit the query for execution. This exanple assunes the absence of any
Sessi onManagenent Service from the collection of Phoenix |IM services being
utilized. */

int resultSetSize = control Stub. executeQuery(null, queryToSubnit);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
180

The Query Service will connect to the Inquisitor’s Input Channel.
- The Query Service creates an Output Channel and connects it to the Inquisitor's
listening Input Channel. Then the Inquisitor will listen for information being written to the
channel. This information is the submitted query’s result set.

/* Read the result set through the input channel. */
iic.readAsync(new I nputHandl er<Information>());

The Query Service delivers the result set, then the inquisitor and the Query Service
disconnect and destroy the Information Channel between themselves.

/* The Inquisitor should destroy its Input Channel once the result set has
been received. */
iic.close(null);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
181

